Directed acyclic graphs: An under-utilized tool for child maltreatment research

Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Child abuse & neglect 2019-05, Vol.91, p.78-87
Hauptverfasser: Austin, Anna E., Desrosiers, Tania A., Shanahan, Meghan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 78
container_title Child abuse & neglect
container_volume 91
creator Austin, Anna E.
Desrosiers, Tania A.
Shanahan, Meghan E.
description Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decisions about the optimal analytic strategy to minimize potential sources of bias. The purpose of this paper is to highlight the utility of DAGs for child maltreatment research and to provide a practical resource to facilitate and support the use of DAGs in child maltreatment research. We first provide an overview of DAG terminology and concepts relevant to child maltreatment research. We describe DAG construction and define specific types of variables within the context of DAGs including confounders, mediators, and colliders, detailing the manner in which each type of variable can be used to inform study design and analysis. We then describe four specific scenarios in which DAGs may yield valuable insights for child maltreatment research: (1) identifying covariates to include in multivariable models to adjust for confounding; (2) identifying unintended effects of adjusting for a mediator; (3) identifying unintended effects of adjusting for multiple types of maltreatment; and (4) identifying potential selection bias in data specific to children involved in the child welfare system. Overall, DAGs have the potential to help strengthen and advance the child maltreatment research and practice agenda by increasing transparency about assumptions, illuminating potential sources of bias, and enhancing the interpretability of results for translation to evidence-based practice.
doi_str_mv 10.1016/j.chiabu.2019.02.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0145213419300687</els_id><sourcerecordid>2218958891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-3c3ce855933851219c8740ed05de2d66a261bd0c3333ca1dfcc5dccc99c59b0a3</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq2qVZkO_AOEInXTTVI_4sRmgYQofUhIbNq15bm-w3jkxFM7QaK_voahQLuoN1743MfnQ8gxow2jrPu4bWDj7WpuOGW6obyhjL0iC6Z6Ufe97F-TBWWtrDkT7QF5l_OWliN7-ZYcCKpEx0W_INeffEKY0FUW7iB4qG6S3W3yaXU-VvPoMNXz5IP_VYgpxlCtY6rK4OCqwYYpoZ0GHKcqYUabYHNI3qxtyHj0eC_Jj8-X3y--1lfXX75dnF_V0Go21QIEoJJSC6Ek40yD6luKjkqH3HWd5R1bOQqiHLDMrQGkAwCtQeoVtWJJzvZ9d_NqQAdlh2SD2SU_2HRnovXm75fRb8xNvDVdK7kq2Zfkw2ODFH_OmCcz-AwYgh0xztlwppTUnIu2oO__QbdxTmOJZ3jBtFRKs0K1ewpSzDnh-mkZRs29MbM1e2Pm3pih3BRjpezkZZCnoj-KnpNi-c5bj8lk8DgCugdzxkX__wm_AT_Nqfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218958891</pqid></control><display><type>article</type><title>Directed acyclic graphs: An under-utilized tool for child maltreatment research</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Austin, Anna E. ; Desrosiers, Tania A. ; Shanahan, Meghan E.</creator><creatorcontrib>Austin, Anna E. ; Desrosiers, Tania A. ; Shanahan, Meghan E.</creatorcontrib><description>Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decisions about the optimal analytic strategy to minimize potential sources of bias. The purpose of this paper is to highlight the utility of DAGs for child maltreatment research and to provide a practical resource to facilitate and support the use of DAGs in child maltreatment research. We first provide an overview of DAG terminology and concepts relevant to child maltreatment research. We describe DAG construction and define specific types of variables within the context of DAGs including confounders, mediators, and colliders, detailing the manner in which each type of variable can be used to inform study design and analysis. We then describe four specific scenarios in which DAGs may yield valuable insights for child maltreatment research: (1) identifying covariates to include in multivariable models to adjust for confounding; (2) identifying unintended effects of adjusting for a mediator; (3) identifying unintended effects of adjusting for multiple types of maltreatment; and (4) identifying potential selection bias in data specific to children involved in the child welfare system. Overall, DAGs have the potential to help strengthen and advance the child maltreatment research and practice agenda by increasing transparency about assumptions, illuminating potential sources of bias, and enhancing the interpretability of results for translation to evidence-based practice.</description><identifier>ISSN: 0145-2134</identifier><identifier>EISSN: 1873-7757</identifier><identifier>DOI: 10.1016/j.chiabu.2019.02.011</identifier><identifier>PMID: 30836237</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bias ; Biomedical Research - methods ; Causal diagrams ; Child ; Child Abuse ; Child abuse &amp; neglect ; Child welfare ; Children ; Colliders ; Confounding ; Confounding Factors, Epidemiologic ; Data Display ; Directed acyclic graphs ; Epidemiologic Methods ; Evidence Based Practice ; Graphs ; Humans ; Methodology ; Models, Psychological ; Multivariate Analysis ; Research methodology ; Selection bias ; Terminology ; Transparency ; Variables</subject><ispartof>Child abuse &amp; neglect, 2019-05, Vol.91, p.78-87</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Pergamon Press Inc. May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-3c3ce855933851219c8740ed05de2d66a261bd0c3333ca1dfcc5dccc99c59b0a3</citedby><cites>FETCH-LOGICAL-c491t-3c3ce855933851219c8740ed05de2d66a261bd0c3333ca1dfcc5dccc99c59b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0145213419300687$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,30976,33751,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30836237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Austin, Anna E.</creatorcontrib><creatorcontrib>Desrosiers, Tania A.</creatorcontrib><creatorcontrib>Shanahan, Meghan E.</creatorcontrib><title>Directed acyclic graphs: An under-utilized tool for child maltreatment research</title><title>Child abuse &amp; neglect</title><addtitle>Child Abuse Negl</addtitle><description>Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decisions about the optimal analytic strategy to minimize potential sources of bias. The purpose of this paper is to highlight the utility of DAGs for child maltreatment research and to provide a practical resource to facilitate and support the use of DAGs in child maltreatment research. We first provide an overview of DAG terminology and concepts relevant to child maltreatment research. We describe DAG construction and define specific types of variables within the context of DAGs including confounders, mediators, and colliders, detailing the manner in which each type of variable can be used to inform study design and analysis. We then describe four specific scenarios in which DAGs may yield valuable insights for child maltreatment research: (1) identifying covariates to include in multivariable models to adjust for confounding; (2) identifying unintended effects of adjusting for a mediator; (3) identifying unintended effects of adjusting for multiple types of maltreatment; and (4) identifying potential selection bias in data specific to children involved in the child welfare system. Overall, DAGs have the potential to help strengthen and advance the child maltreatment research and practice agenda by increasing transparency about assumptions, illuminating potential sources of bias, and enhancing the interpretability of results for translation to evidence-based practice.</description><subject>Bias</subject><subject>Biomedical Research - methods</subject><subject>Causal diagrams</subject><subject>Child</subject><subject>Child Abuse</subject><subject>Child abuse &amp; neglect</subject><subject>Child welfare</subject><subject>Children</subject><subject>Colliders</subject><subject>Confounding</subject><subject>Confounding Factors, Epidemiologic</subject><subject>Data Display</subject><subject>Directed acyclic graphs</subject><subject>Epidemiologic Methods</subject><subject>Evidence Based Practice</subject><subject>Graphs</subject><subject>Humans</subject><subject>Methodology</subject><subject>Models, Psychological</subject><subject>Multivariate Analysis</subject><subject>Research methodology</subject><subject>Selection bias</subject><subject>Terminology</subject><subject>Transparency</subject><subject>Variables</subject><issn>0145-2134</issn><issn>1873-7757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kUtP3DAURq2qVZkO_AOEInXTTVI_4sRmgYQofUhIbNq15bm-w3jkxFM7QaK_voahQLuoN1743MfnQ8gxow2jrPu4bWDj7WpuOGW6obyhjL0iC6Z6Ufe97F-TBWWtrDkT7QF5l_OWliN7-ZYcCKpEx0W_INeffEKY0FUW7iB4qG6S3W3yaXU-VvPoMNXz5IP_VYgpxlCtY6rK4OCqwYYpoZ0GHKcqYUabYHNI3qxtyHj0eC_Jj8-X3y--1lfXX75dnF_V0Go21QIEoJJSC6Ek40yD6luKjkqH3HWd5R1bOQqiHLDMrQGkAwCtQeoVtWJJzvZ9d_NqQAdlh2SD2SU_2HRnovXm75fRb8xNvDVdK7kq2Zfkw2ODFH_OmCcz-AwYgh0xztlwppTUnIu2oO__QbdxTmOJZ3jBtFRKs0K1ewpSzDnh-mkZRs29MbM1e2Pm3pih3BRjpezkZZCnoj-KnpNi-c5bj8lk8DgCugdzxkX__wm_AT_Nqfc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Austin, Anna E.</creator><creator>Desrosiers, Tania A.</creator><creator>Shanahan, Meghan E.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7U3</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>K7.</scope><scope>K9.</scope><scope>WZK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Directed acyclic graphs: An under-utilized tool for child maltreatment research</title><author>Austin, Anna E. ; Desrosiers, Tania A. ; Shanahan, Meghan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-3c3ce855933851219c8740ed05de2d66a261bd0c3333ca1dfcc5dccc99c59b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Biomedical Research - methods</topic><topic>Causal diagrams</topic><topic>Child</topic><topic>Child Abuse</topic><topic>Child abuse &amp; neglect</topic><topic>Child welfare</topic><topic>Children</topic><topic>Colliders</topic><topic>Confounding</topic><topic>Confounding Factors, Epidemiologic</topic><topic>Data Display</topic><topic>Directed acyclic graphs</topic><topic>Epidemiologic Methods</topic><topic>Evidence Based Practice</topic><topic>Graphs</topic><topic>Humans</topic><topic>Methodology</topic><topic>Models, Psychological</topic><topic>Multivariate Analysis</topic><topic>Research methodology</topic><topic>Selection bias</topic><topic>Terminology</topic><topic>Transparency</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Anna E.</creatorcontrib><creatorcontrib>Desrosiers, Tania A.</creatorcontrib><creatorcontrib>Shanahan, Meghan E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Social Services Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Child abuse &amp; neglect</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Anna E.</au><au>Desrosiers, Tania A.</au><au>Shanahan, Meghan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed acyclic graphs: An under-utilized tool for child maltreatment research</atitle><jtitle>Child abuse &amp; neglect</jtitle><addtitle>Child Abuse Negl</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>91</volume><spage>78</spage><epage>87</epage><pages>78-87</pages><issn>0145-2134</issn><eissn>1873-7757</eissn><abstract>Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decisions about the optimal analytic strategy to minimize potential sources of bias. The purpose of this paper is to highlight the utility of DAGs for child maltreatment research and to provide a practical resource to facilitate and support the use of DAGs in child maltreatment research. We first provide an overview of DAG terminology and concepts relevant to child maltreatment research. We describe DAG construction and define specific types of variables within the context of DAGs including confounders, mediators, and colliders, detailing the manner in which each type of variable can be used to inform study design and analysis. We then describe four specific scenarios in which DAGs may yield valuable insights for child maltreatment research: (1) identifying covariates to include in multivariable models to adjust for confounding; (2) identifying unintended effects of adjusting for a mediator; (3) identifying unintended effects of adjusting for multiple types of maltreatment; and (4) identifying potential selection bias in data specific to children involved in the child welfare system. Overall, DAGs have the potential to help strengthen and advance the child maltreatment research and practice agenda by increasing transparency about assumptions, illuminating potential sources of bias, and enhancing the interpretability of results for translation to evidence-based practice.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30836237</pmid><doi>10.1016/j.chiabu.2019.02.011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0145-2134
ispartof Child abuse & neglect, 2019-05, Vol.91, p.78-87
issn 0145-2134
1873-7757
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452862
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Bias
Biomedical Research - methods
Causal diagrams
Child
Child Abuse
Child abuse & neglect
Child welfare
Children
Colliders
Confounding
Confounding Factors, Epidemiologic
Data Display
Directed acyclic graphs
Epidemiologic Methods
Evidence Based Practice
Graphs
Humans
Methodology
Models, Psychological
Multivariate Analysis
Research methodology
Selection bias
Terminology
Transparency
Variables
title Directed acyclic graphs: An under-utilized tool for child maltreatment research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20acyclic%20graphs:%20An%20under-utilized%20tool%20for%20child%20maltreatment%20research&rft.jtitle=Child%20abuse%20&%20neglect&rft.au=Austin,%20Anna%20E.&rft.date=2019-05-01&rft.volume=91&rft.spage=78&rft.epage=87&rft.pages=78-87&rft.issn=0145-2134&rft.eissn=1873-7757&rft_id=info:doi/10.1016/j.chiabu.2019.02.011&rft_dat=%3Cproquest_pubme%3E2218958891%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218958891&rft_id=info:pmid/30836237&rft_els_id=S0145213419300687&rfr_iscdi=true