Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance
Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2019-04, Vol.116 (7), p.1305-1312 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1312 |
---|---|
container_issue | 7 |
container_start_page | 1305 |
container_title | Biophysical journal |
container_volume | 116 |
creator | Cóndor, Mar Mark, Christoph Gerum, Richard C. Grummel, Nadine C. Bauer, Andreas García-Aznar, José M. Fabry, Ben |
description | Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance. |
doi_str_mv | 10.1016/j.bpj.2019.02.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519301705</els_id><sourcerecordid>2196529485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</originalsourceid><addsrcrecordid>eNp9UctKAzEUDaJofXyAG5mlm6k3mUxsEIRarC0UXKjrkEnuaMp0UpNpwb83Q1V0I1wIJOdxcw4h5xSGFKi4Wg6r9XLIgMohsDRyjwxoyVkOMBL7ZAAAIi-4LI_IcYxLAMpKoIfkqAAJrBBiQOZ3AXXssoluDYZsgk0Ts7HV63Tl2y5o07kGs6kPBmPW-exxi8H4FWZPHQZnsplrbejJp-Sg1k3Es6_zhLxM758ns3zx-DCfjBe54SXtclYVNa_qUlImNGhbcG5NgaaGayvqtCyDyjJNOV5LyaoR48CN5RRqYILpsjghtzvd9aZaoTXYb9modXArHT6U1079fWndm3r1WyWSPwiaBC6_BIJ_32Ds1MpFkz6uW_SbqBiVomSSj3ovuoOa4GMMWP_YUFB9BWqpUgWqr0ABSyMT5-L3fj-M78wT4GYHwJTS1mFQ0ThMCVoX0HTKeveP_Ce2Kpbv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196529485</pqid></control><display><type>article</type><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</creator><creatorcontrib>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</creatorcontrib><description>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.02.029</identifier><identifier>PMID: 30902366</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological ; Cell Line, Tumor ; Cell Movement ; Cell Shape ; Collagen - chemistry ; Epithelial Cells - physiology ; Extracellular Matrix - chemistry ; Humans ; Lamin Type A - metabolism ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2019-04, Vol.116 (7), p.1305-1312</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</citedby><cites>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451061/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519301705$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,53769,53771,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30902366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cóndor, Mar</creatorcontrib><creatorcontrib>Mark, Christoph</creatorcontrib><creatorcontrib>Gerum, Richard C.</creatorcontrib><creatorcontrib>Grummel, Nadine C.</creatorcontrib><creatorcontrib>Bauer, Andreas</creatorcontrib><creatorcontrib>García-Aznar, José M.</creatorcontrib><creatorcontrib>Fabry, Ben</creatorcontrib><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</description><subject>Adaptation, Physiological</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Shape</subject><subject>Collagen - chemistry</subject><subject>Epithelial Cells - physiology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Humans</subject><subject>Lamin Type A - metabolism</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctKAzEUDaJofXyAG5mlm6k3mUxsEIRarC0UXKjrkEnuaMp0UpNpwb83Q1V0I1wIJOdxcw4h5xSGFKi4Wg6r9XLIgMohsDRyjwxoyVkOMBL7ZAAAIi-4LI_IcYxLAMpKoIfkqAAJrBBiQOZ3AXXssoluDYZsgk0Ts7HV63Tl2y5o07kGs6kPBmPW-exxi8H4FWZPHQZnsplrbejJp-Sg1k3Es6_zhLxM758ns3zx-DCfjBe54SXtclYVNa_qUlImNGhbcG5NgaaGayvqtCyDyjJNOV5LyaoR48CN5RRqYILpsjghtzvd9aZaoTXYb9modXArHT6U1079fWndm3r1WyWSPwiaBC6_BIJ_32Ds1MpFkz6uW_SbqBiVomSSj3ovuoOa4GMMWP_YUFB9BWqpUgWqr0ABSyMT5-L3fj-M78wT4GYHwJTS1mFQ0ThMCVoX0HTKeveP_Ce2Kpbv</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>Cóndor, Mar</creator><creator>Mark, Christoph</creator><creator>Gerum, Richard C.</creator><creator>Grummel, Nadine C.</creator><creator>Bauer, Andreas</creator><creator>García-Aznar, José M.</creator><creator>Fabry, Ben</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190402</creationdate><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><author>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Physiological</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Shape</topic><topic>Collagen - chemistry</topic><topic>Epithelial Cells - physiology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Humans</topic><topic>Lamin Type A - metabolism</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cóndor, Mar</creatorcontrib><creatorcontrib>Mark, Christoph</creatorcontrib><creatorcontrib>Gerum, Richard C.</creatorcontrib><creatorcontrib>Grummel, Nadine C.</creatorcontrib><creatorcontrib>Bauer, Andreas</creatorcontrib><creatorcontrib>García-Aznar, José M.</creatorcontrib><creatorcontrib>Fabry, Ben</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cóndor, Mar</au><au>Mark, Christoph</au><au>Gerum, Richard C.</au><au>Grummel, Nadine C.</au><au>Bauer, Andreas</au><au>García-Aznar, José M.</au><au>Fabry, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-04-02</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>1305</spage><epage>1312</epage><pages>1305-1312</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30902366</pmid><doi>10.1016/j.bpj.2019.02.029</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2019-04, Vol.116 (7), p.1305-1312 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451061 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adaptation, Physiological Cell Line, Tumor Cell Movement Cell Shape Collagen - chemistry Epithelial Cells - physiology Extracellular Matrix - chemistry Humans Lamin Type A - metabolism Stress, Mechanical |
title | Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Cells%20Adapt%20Contractile%20Forces%20to%20Overcome%20Steric%20Hindrance&rft.jtitle=Biophysical%20journal&rft.au=C%C3%B3ndor,%20Mar&rft.date=2019-04-02&rft.volume=116&rft.issue=7&rft.spage=1305&rft.epage=1312&rft.pages=1305-1312&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.02.029&rft_dat=%3Cproquest_pubme%3E2196529485%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196529485&rft_id=info:pmid/30902366&rft_els_id=S0006349519301705&rfr_iscdi=true |