Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance

Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2019-04, Vol.116 (7), p.1305-1312
Hauptverfasser: Cóndor, Mar, Mark, Christoph, Gerum, Richard C., Grummel, Nadine C., Bauer, Andreas, García-Aznar, José M., Fabry, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 7
container_start_page 1305
container_title Biophysical journal
container_volume 116
creator Cóndor, Mar
Mark, Christoph
Gerum, Richard C.
Grummel, Nadine C.
Bauer, Andreas
García-Aznar, José M.
Fabry, Ben
description Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.
doi_str_mv 10.1016/j.bpj.2019.02.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519301705</els_id><sourcerecordid>2196529485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</originalsourceid><addsrcrecordid>eNp9UctKAzEUDaJofXyAG5mlm6k3mUxsEIRarC0UXKjrkEnuaMp0UpNpwb83Q1V0I1wIJOdxcw4h5xSGFKi4Wg6r9XLIgMohsDRyjwxoyVkOMBL7ZAAAIi-4LI_IcYxLAMpKoIfkqAAJrBBiQOZ3AXXssoluDYZsgk0Ts7HV63Tl2y5o07kGs6kPBmPW-exxi8H4FWZPHQZnsplrbejJp-Sg1k3Es6_zhLxM758ns3zx-DCfjBe54SXtclYVNa_qUlImNGhbcG5NgaaGayvqtCyDyjJNOV5LyaoR48CN5RRqYILpsjghtzvd9aZaoTXYb9modXArHT6U1079fWndm3r1WyWSPwiaBC6_BIJ_32Ds1MpFkz6uW_SbqBiVomSSj3ovuoOa4GMMWP_YUFB9BWqpUgWqr0ABSyMT5-L3fj-M78wT4GYHwJTS1mFQ0ThMCVoX0HTKeveP_Ce2Kpbv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196529485</pqid></control><display><type>article</type><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</creator><creatorcontrib>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</creatorcontrib><description>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.02.029</identifier><identifier>PMID: 30902366</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological ; Cell Line, Tumor ; Cell Movement ; Cell Shape ; Collagen - chemistry ; Epithelial Cells - physiology ; Extracellular Matrix - chemistry ; Humans ; Lamin Type A - metabolism ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2019-04, Vol.116 (7), p.1305-1312</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</citedby><cites>FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451061/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519301705$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,53769,53771,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30902366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cóndor, Mar</creatorcontrib><creatorcontrib>Mark, Christoph</creatorcontrib><creatorcontrib>Gerum, Richard C.</creatorcontrib><creatorcontrib>Grummel, Nadine C.</creatorcontrib><creatorcontrib>Bauer, Andreas</creatorcontrib><creatorcontrib>García-Aznar, José M.</creatorcontrib><creatorcontrib>Fabry, Ben</creatorcontrib><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</description><subject>Adaptation, Physiological</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Shape</subject><subject>Collagen - chemistry</subject><subject>Epithelial Cells - physiology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Humans</subject><subject>Lamin Type A - metabolism</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctKAzEUDaJofXyAG5mlm6k3mUxsEIRarC0UXKjrkEnuaMp0UpNpwb83Q1V0I1wIJOdxcw4h5xSGFKi4Wg6r9XLIgMohsDRyjwxoyVkOMBL7ZAAAIi-4LI_IcYxLAMpKoIfkqAAJrBBiQOZ3AXXssoluDYZsgk0Ts7HV63Tl2y5o07kGs6kPBmPW-exxi8H4FWZPHQZnsplrbejJp-Sg1k3Es6_zhLxM758ns3zx-DCfjBe54SXtclYVNa_qUlImNGhbcG5NgaaGayvqtCyDyjJNOV5LyaoR48CN5RRqYILpsjghtzvd9aZaoTXYb9modXArHT6U1079fWndm3r1WyWSPwiaBC6_BIJ_32Ds1MpFkz6uW_SbqBiVomSSj3ovuoOa4GMMWP_YUFB9BWqpUgWqr0ABSyMT5-L3fj-M78wT4GYHwJTS1mFQ0ThMCVoX0HTKeveP_Ce2Kpbv</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>Cóndor, Mar</creator><creator>Mark, Christoph</creator><creator>Gerum, Richard C.</creator><creator>Grummel, Nadine C.</creator><creator>Bauer, Andreas</creator><creator>García-Aznar, José M.</creator><creator>Fabry, Ben</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190402</creationdate><title>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</title><author>Cóndor, Mar ; Mark, Christoph ; Gerum, Richard C. ; Grummel, Nadine C. ; Bauer, Andreas ; García-Aznar, José M. ; Fabry, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2b3f4bf59126a0ad344dc3ecf07d6f34920bd2a14e7992b82404cd410f0262a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Physiological</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Shape</topic><topic>Collagen - chemistry</topic><topic>Epithelial Cells - physiology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Humans</topic><topic>Lamin Type A - metabolism</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cóndor, Mar</creatorcontrib><creatorcontrib>Mark, Christoph</creatorcontrib><creatorcontrib>Gerum, Richard C.</creatorcontrib><creatorcontrib>Grummel, Nadine C.</creatorcontrib><creatorcontrib>Bauer, Andreas</creatorcontrib><creatorcontrib>García-Aznar, José M.</creatorcontrib><creatorcontrib>Fabry, Ben</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cóndor, Mar</au><au>Mark, Christoph</au><au>Gerum, Richard C.</au><au>Grummel, Nadine C.</au><au>Bauer, Andreas</au><au>García-Aznar, José M.</au><au>Fabry, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-04-02</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>1305</spage><epage>1312</epage><pages>1305-1312</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30902366</pmid><doi>10.1016/j.bpj.2019.02.029</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2019-04, Vol.116 (7), p.1305-1312
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451061
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptation, Physiological
Cell Line, Tumor
Cell Movement
Cell Shape
Collagen - chemistry
Epithelial Cells - physiology
Extracellular Matrix - chemistry
Humans
Lamin Type A - metabolism
Stress, Mechanical
title Breast Cancer Cells Adapt Contractile Forces to Overcome Steric Hindrance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Cells%20Adapt%20Contractile%20Forces%20to%20Overcome%20Steric%20Hindrance&rft.jtitle=Biophysical%20journal&rft.au=C%C3%B3ndor,%20Mar&rft.date=2019-04-02&rft.volume=116&rft.issue=7&rft.spage=1305&rft.epage=1312&rft.pages=1305-1312&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.02.029&rft_dat=%3Cproquest_pubme%3E2196529485%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196529485&rft_id=info:pmid/30902366&rft_els_id=S0006349519301705&rfr_iscdi=true