Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction

Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.5728-5728, Article 5728
Hauptverfasser: Baade, Timo, Paone, Christoph, Baldrich, Adrian, Hauck, Christof R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5728
container_issue 1
container_start_page 5728
container_title Scientific reports
container_volume 9
creator Baade, Timo
Paone, Christoph
Baldrich, Adrian
Hauck, Christof R.
description Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130 CAS , or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.
doi_str_mv 10.1038/s41598-019-42002-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6450878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203731201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</originalsourceid><addsrcrecordid>eNp9Uctu1TAQtRCIVqU_wAJZYsMm4HfiDRK6ogWpEpvuLcexc10ldrCdSuUz-il8CN-Ewy2XwgJvPOM554xnDgAvMXqLEe3eZYa57BqEZcMIQqQRT8ApQYw3hBLy9FF8As5zvkH1cCIZls_BCUWSk67tTsH9blpzscmHEUYHfSh2rAn88R2auxKXSefZGzjEWfuQYUl-HG3KMOhsbChQD3ubfQzQxTTrskU6DDDZW6unDDVcUizxW9QBxsqtyrVL2dtjp6boqb5uadJmE3gBnrnKtecP9xm4vvh4vfvUXH25_Lz7cNUY1rLSCIZ72xIjO0OIlhwR1HHRI2OxFh2rFSQQEc71bOgH2XLnqEAMDz1qW-roGXh_kF3WfrbDNk3Sk1qSn3W6U1F79Xcl-L0a460SjKO6uyrw5kEgxa-rzUXNvi5lmnSwcc2KVAeEbDvOK_T1P9CbuKZQp9tQtKWYIFxR5IAyKeacrDt-BiO1ma4OpqtquvpluhKV9OrxGEfKb4srgB4AedlctulP7__I_gRgtrwP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203731201</pqid></control><display><type>article</type><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</creator><creatorcontrib>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</creatorcontrib><description>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130 CAS , or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-42002-6</identifier><identifier>PMID: 30952878</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 14/19 ; 42/70 ; 631/181/735 ; 631/80/79/1236 ; 631/80/79/2027 ; Adhesion ; Amino acids ; Binding sites ; Cytoplasm - metabolism ; Evolutionary conservation ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Integrin beta Chains - metabolism ; Integrins ; multidisciplinary ; Paxillin ; Protein Binding ; Protein interaction ; Proteins ; Protozoa ; Science ; Science (multidisciplinary) ; Talin ; Talin - metabolism ; Vinculin</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5728-5728, Article 5728</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</citedby><cites>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baade, Timo</creatorcontrib><creatorcontrib>Paone, Christoph</creatorcontrib><creatorcontrib>Baldrich, Adrian</creatorcontrib><creatorcontrib>Hauck, Christof R.</creatorcontrib><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130 CAS , or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</description><subject>13</subject><subject>13/106</subject><subject>14/19</subject><subject>42/70</subject><subject>631/181/735</subject><subject>631/80/79/1236</subject><subject>631/80/79/2027</subject><subject>Adhesion</subject><subject>Amino acids</subject><subject>Binding sites</subject><subject>Cytoplasm - metabolism</subject><subject>Evolutionary conservation</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Integrin beta Chains - metabolism</subject><subject>Integrins</subject><subject>multidisciplinary</subject><subject>Paxillin</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Talin</subject><subject>Talin - metabolism</subject><subject>Vinculin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uctu1TAQtRCIVqU_wAJZYsMm4HfiDRK6ogWpEpvuLcexc10ldrCdSuUz-il8CN-Ewy2XwgJvPOM554xnDgAvMXqLEe3eZYa57BqEZcMIQqQRT8ApQYw3hBLy9FF8As5zvkH1cCIZls_BCUWSk67tTsH9blpzscmHEUYHfSh2rAn88R2auxKXSefZGzjEWfuQYUl-HG3KMOhsbChQD3ubfQzQxTTrskU6DDDZW6unDDVcUizxW9QBxsqtyrVL2dtjp6boqb5uadJmE3gBnrnKtecP9xm4vvh4vfvUXH25_Lz7cNUY1rLSCIZ72xIjO0OIlhwR1HHRI2OxFh2rFSQQEc71bOgH2XLnqEAMDz1qW-roGXh_kF3WfrbDNk3Sk1qSn3W6U1F79Xcl-L0a460SjKO6uyrw5kEgxa-rzUXNvi5lmnSwcc2KVAeEbDvOK_T1P9CbuKZQp9tQtKWYIFxR5IAyKeacrDt-BiO1ma4OpqtquvpluhKV9OrxGEfKb4srgB4AedlctulP7__I_gRgtrwP</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Baade, Timo</creator><creator>Paone, Christoph</creator><creator>Baldrich, Adrian</creator><creator>Hauck, Christof R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190405</creationdate><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><author>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/106</topic><topic>14/19</topic><topic>42/70</topic><topic>631/181/735</topic><topic>631/80/79/1236</topic><topic>631/80/79/2027</topic><topic>Adhesion</topic><topic>Amino acids</topic><topic>Binding sites</topic><topic>Cytoplasm - metabolism</topic><topic>Evolutionary conservation</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Integrin beta Chains - metabolism</topic><topic>Integrins</topic><topic>multidisciplinary</topic><topic>Paxillin</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Talin</topic><topic>Talin - metabolism</topic><topic>Vinculin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baade, Timo</creatorcontrib><creatorcontrib>Paone, Christoph</creatorcontrib><creatorcontrib>Baldrich, Adrian</creatorcontrib><creatorcontrib>Hauck, Christof R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baade, Timo</au><au>Paone, Christoph</au><au>Baldrich, Adrian</au><au>Hauck, Christof R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-05</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5728</spage><epage>5728</epage><pages>5728-5728</pages><artnum>5728</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130 CAS , or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30952878</pmid><doi>10.1038/s41598-019-42002-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-04, Vol.9 (1), p.5728-5728, Article 5728
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6450878
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13
13/106
14/19
42/70
631/181/735
631/80/79/1236
631/80/79/2027
Adhesion
Amino acids
Binding sites
Cytoplasm - metabolism
Evolutionary conservation
HEK293 Cells
Humanities and Social Sciences
Humans
Integrin beta Chains - metabolism
Integrins
multidisciplinary
Paxillin
Protein Binding
Protein interaction
Proteins
Protozoa
Science
Science (multidisciplinary)
Talin
Talin - metabolism
Vinculin
title Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20integrin%20%CE%B2%20cytoplasmic%20domains%20triggers%20nascent%20adhesion%20formation%20and%20reveals%20a%20protozoan%20origin%20of%20the%20integrin-talin%20interaction&rft.jtitle=Scientific%20reports&rft.au=Baade,%20Timo&rft.date=2019-04-05&rft.volume=9&rft.issue=1&rft.spage=5728&rft.epage=5728&rft.pages=5728-5728&rft.artnum=5728&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-42002-6&rft_dat=%3Cproquest_pubme%3E2203731201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203731201&rft_id=info:pmid/30952878&rfr_iscdi=true