Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction
Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-04, Vol.9 (1), p.5728-5728, Article 5728 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5728 |
---|---|
container_issue | 1 |
container_start_page | 5728 |
container_title | Scientific reports |
container_volume | 9 |
creator | Baade, Timo Paone, Christoph Baldrich, Adrian Hauck, Christof R. |
description | Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130
CAS
, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan
Capsaspora owczarzaki
readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation. |
doi_str_mv | 10.1038/s41598-019-42002-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6450878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203731201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</originalsourceid><addsrcrecordid>eNp9Uctu1TAQtRCIVqU_wAJZYsMm4HfiDRK6ogWpEpvuLcexc10ldrCdSuUz-il8CN-Ewy2XwgJvPOM554xnDgAvMXqLEe3eZYa57BqEZcMIQqQRT8ApQYw3hBLy9FF8As5zvkH1cCIZls_BCUWSk67tTsH9blpzscmHEUYHfSh2rAn88R2auxKXSefZGzjEWfuQYUl-HG3KMOhsbChQD3ubfQzQxTTrskU6DDDZW6unDDVcUizxW9QBxsqtyrVL2dtjp6boqb5uadJmE3gBnrnKtecP9xm4vvh4vfvUXH25_Lz7cNUY1rLSCIZ72xIjO0OIlhwR1HHRI2OxFh2rFSQQEc71bOgH2XLnqEAMDz1qW-roGXh_kF3WfrbDNk3Sk1qSn3W6U1F79Xcl-L0a460SjKO6uyrw5kEgxa-rzUXNvi5lmnSwcc2KVAeEbDvOK_T1P9CbuKZQp9tQtKWYIFxR5IAyKeacrDt-BiO1ma4OpqtquvpluhKV9OrxGEfKb4srgB4AedlctulP7__I_gRgtrwP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203731201</pqid></control><display><type>article</type><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</creator><creatorcontrib>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</creatorcontrib><description>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130
CAS
, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan
Capsaspora owczarzaki
readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-42002-6</identifier><identifier>PMID: 30952878</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 14/19 ; 42/70 ; 631/181/735 ; 631/80/79/1236 ; 631/80/79/2027 ; Adhesion ; Amino acids ; Binding sites ; Cytoplasm - metabolism ; Evolutionary conservation ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Integrin beta Chains - metabolism ; Integrins ; multidisciplinary ; Paxillin ; Protein Binding ; Protein interaction ; Proteins ; Protozoa ; Science ; Science (multidisciplinary) ; Talin ; Talin - metabolism ; Vinculin</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5728-5728, Article 5728</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</citedby><cites>FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baade, Timo</creatorcontrib><creatorcontrib>Paone, Christoph</creatorcontrib><creatorcontrib>Baldrich, Adrian</creatorcontrib><creatorcontrib>Hauck, Christof R.</creatorcontrib><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130
CAS
, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan
Capsaspora owczarzaki
readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</description><subject>13</subject><subject>13/106</subject><subject>14/19</subject><subject>42/70</subject><subject>631/181/735</subject><subject>631/80/79/1236</subject><subject>631/80/79/2027</subject><subject>Adhesion</subject><subject>Amino acids</subject><subject>Binding sites</subject><subject>Cytoplasm - metabolism</subject><subject>Evolutionary conservation</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Integrin beta Chains - metabolism</subject><subject>Integrins</subject><subject>multidisciplinary</subject><subject>Paxillin</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Talin</subject><subject>Talin - metabolism</subject><subject>Vinculin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uctu1TAQtRCIVqU_wAJZYsMm4HfiDRK6ogWpEpvuLcexc10ldrCdSuUz-il8CN-Ewy2XwgJvPOM554xnDgAvMXqLEe3eZYa57BqEZcMIQqQRT8ApQYw3hBLy9FF8As5zvkH1cCIZls_BCUWSk67tTsH9blpzscmHEUYHfSh2rAn88R2auxKXSefZGzjEWfuQYUl-HG3KMOhsbChQD3ubfQzQxTTrskU6DDDZW6unDDVcUizxW9QBxsqtyrVL2dtjp6boqb5uadJmE3gBnrnKtecP9xm4vvh4vfvUXH25_Lz7cNUY1rLSCIZ72xIjO0OIlhwR1HHRI2OxFh2rFSQQEc71bOgH2XLnqEAMDz1qW-roGXh_kF3WfrbDNk3Sk1qSn3W6U1F79Xcl-L0a460SjKO6uyrw5kEgxa-rzUXNvi5lmnSwcc2KVAeEbDvOK_T1P9CbuKZQp9tQtKWYIFxR5IAyKeacrDt-BiO1ma4OpqtquvpluhKV9OrxGEfKb4srgB4AedlctulP7__I_gRgtrwP</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Baade, Timo</creator><creator>Paone, Christoph</creator><creator>Baldrich, Adrian</creator><creator>Hauck, Christof R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190405</creationdate><title>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</title><author>Baade, Timo ; Paone, Christoph ; Baldrich, Adrian ; Hauck, Christof R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-641be72c98c22a95020856b0ce1a68472c06026ffb4dbd975ff36041db0773f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/106</topic><topic>14/19</topic><topic>42/70</topic><topic>631/181/735</topic><topic>631/80/79/1236</topic><topic>631/80/79/2027</topic><topic>Adhesion</topic><topic>Amino acids</topic><topic>Binding sites</topic><topic>Cytoplasm - metabolism</topic><topic>Evolutionary conservation</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Integrin beta Chains - metabolism</topic><topic>Integrins</topic><topic>multidisciplinary</topic><topic>Paxillin</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Talin</topic><topic>Talin - metabolism</topic><topic>Vinculin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baade, Timo</creatorcontrib><creatorcontrib>Paone, Christoph</creatorcontrib><creatorcontrib>Baldrich, Adrian</creatorcontrib><creatorcontrib>Hauck, Christof R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baade, Timo</au><au>Paone, Christoph</au><au>Baldrich, Adrian</au><au>Hauck, Christof R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-05</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5728</spage><epage>5728</epage><pages>5728-5728</pages><artnum>5728</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130
CAS
, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan
Capsaspora owczarzaki
readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30952878</pmid><doi>10.1038/s41598-019-42002-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-04, Vol.9 (1), p.5728-5728, Article 5728 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6450878 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13 13/106 14/19 42/70 631/181/735 631/80/79/1236 631/80/79/2027 Adhesion Amino acids Binding sites Cytoplasm - metabolism Evolutionary conservation HEK293 Cells Humanities and Social Sciences Humans Integrin beta Chains - metabolism Integrins multidisciplinary Paxillin Protein Binding Protein interaction Proteins Protozoa Science Science (multidisciplinary) Talin Talin - metabolism Vinculin |
title | Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20integrin%20%CE%B2%20cytoplasmic%20domains%20triggers%20nascent%20adhesion%20formation%20and%20reveals%20a%20protozoan%20origin%20of%20the%20integrin-talin%20interaction&rft.jtitle=Scientific%20reports&rft.au=Baade,%20Timo&rft.date=2019-04-05&rft.volume=9&rft.issue=1&rft.spage=5728&rft.epage=5728&rft.pages=5728-5728&rft.artnum=5728&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-42002-6&rft_dat=%3Cproquest_pubme%3E2203731201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203731201&rft_id=info:pmid/30952878&rfr_iscdi=true |