Improving protein function prediction using protein sequence and GO-term similarities
Abstract Motivation Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-04, Vol.35 (7), p.1116-1124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1124 |
---|---|
container_issue | 7 |
container_start_page | 1116 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Makrodimitris, Stavros van Ham, Roeland C H J Reinders, Marcel J T |
description | Abstract
Motivation
Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for computers to learn, in particular the Biological Process ontology, which has the most terms (>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit the redundancy of GO terms and transform them into a more compact latent representation that is easier to predict.
Results
We compare proteins using a sequence similarity profile (SSP) to a set of annotated training proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one based on semantic similarity of terms. We show that these LSDR methods, as well as three existing ones, improve the Critical Assessment of Functional Annotation performance of several function prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art and baseline methods in terms of cross-validated F-measure.
Availability and implementation
Source code for the experiments is available at https://github.com/stamakro/SSP-LSDR.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty751</oup_id><sourcerecordid>2098770316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-c1d19ad4c583fc8260e8d196a2672a991f70c067a672dd8f6b4c1491c5738d423</originalsourceid><addsrcrecordid>eNqNkU1LwzAYx4MoOqcfQenRS13S5qW5CCI6B4Nd3DmkaTojbTKTdLBvb6RT5s3T8_Z7_k_CH4AbBO8R5OWsNs7Y1vleRqPCrI57RtAJmCBMYV5Awk9TXlKW4wqWF-AyhA8ICcIYn4OLEiLKCeUTsF70W-92xm6yFKM2NmsHq6JxNjV0Y8Z0CMdE0J-Dtkpn0jbZfJVH7fssmN500ptodLgCZ63sgr4-xClYvzy_Pb3my9V88fS4zBUmRcwVahCXDVakKltVFRTqKnWoLCgrJOeoZVBBymQqm6ZqaY0VwhwpwsqqwUU5BQ-j7naoe90obaOXndh600u_F04a8XdizbvYuJ2gGHNGSBK4Owh4l_4UouhNULrrpNVuCKKAvGIMlogmlIyo8i4Er9vfMwiKb0vEX0vEaEnauz1-4-_WjwcJgCPghu0_Nb8Apj-hXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098770316</pqid></control><display><type>article</type><title>Improving protein function prediction using protein sequence and GO-term similarities</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Makrodimitris, Stavros ; van Ham, Roeland C H J ; Reinders, Marcel J T</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Makrodimitris, Stavros ; van Ham, Roeland C H J ; Reinders, Marcel J T ; Valencia, Alfonso</creatorcontrib><description>Abstract
Motivation
Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for computers to learn, in particular the Biological Process ontology, which has the most terms (>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit the redundancy of GO terms and transform them into a more compact latent representation that is easier to predict.
Results
We compare proteins using a sequence similarity profile (SSP) to a set of annotated training proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one based on semantic similarity of terms. We show that these LSDR methods, as well as three existing ones, improve the Critical Assessment of Functional Annotation performance of several function prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art and baseline methods in terms of cross-validated F-measure.
Availability and implementation
Source code for the experiments is available at https://github.com/stamakro/SSP-LSDR.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty751</identifier><identifier>PMID: 30169569</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Amino Acid Sequence ; Computational Biology ; Gene Ontology ; Molecular Sequence Annotation ; Original Papers ; Software</subject><ispartof>Bioinformatics, 2019-04, Vol.35 (7), p.1116-1124</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-c1d19ad4c583fc8260e8d196a2672a991f70c067a672dd8f6b4c1491c5738d423</citedby><cites>FETCH-LOGICAL-c452t-c1d19ad4c583fc8260e8d196a2672a991f70c067a672dd8f6b4c1491c5738d423</cites><orcidid>0000-0002-3111-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449755/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449755/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30169569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>van Ham, Roeland C H J</creatorcontrib><creatorcontrib>Reinders, Marcel J T</creatorcontrib><title>Improving protein function prediction using protein sequence and GO-term similarities</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for computers to learn, in particular the Biological Process ontology, which has the most terms (>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit the redundancy of GO terms and transform them into a more compact latent representation that is easier to predict.
Results
We compare proteins using a sequence similarity profile (SSP) to a set of annotated training proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one based on semantic similarity of terms. We show that these LSDR methods, as well as three existing ones, improve the Critical Assessment of Functional Annotation performance of several function prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art and baseline methods in terms of cross-validated F-measure.
Availability and implementation
Source code for the experiments is available at https://github.com/stamakro/SSP-LSDR.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Computational Biology</subject><subject>Gene Ontology</subject><subject>Molecular Sequence Annotation</subject><subject>Original Papers</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1LwzAYx4MoOqcfQenRS13S5qW5CCI6B4Nd3DmkaTojbTKTdLBvb6RT5s3T8_Z7_k_CH4AbBO8R5OWsNs7Y1vleRqPCrI57RtAJmCBMYV5Awk9TXlKW4wqWF-AyhA8ICcIYn4OLEiLKCeUTsF70W-92xm6yFKM2NmsHq6JxNjV0Y8Z0CMdE0J-Dtkpn0jbZfJVH7fssmN500ptodLgCZ63sgr4-xClYvzy_Pb3my9V88fS4zBUmRcwVahCXDVakKltVFRTqKnWoLCgrJOeoZVBBymQqm6ZqaY0VwhwpwsqqwUU5BQ-j7naoe90obaOXndh600u_F04a8XdizbvYuJ2gGHNGSBK4Owh4l_4UouhNULrrpNVuCKKAvGIMlogmlIyo8i4Er9vfMwiKb0vEX0vEaEnauz1-4-_WjwcJgCPghu0_Nb8Apj-hXA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Makrodimitris, Stavros</creator><creator>van Ham, Roeland C H J</creator><creator>Reinders, Marcel J T</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid></search><sort><creationdate>20190401</creationdate><title>Improving protein function prediction using protein sequence and GO-term similarities</title><author>Makrodimitris, Stavros ; van Ham, Roeland C H J ; Reinders, Marcel J T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-c1d19ad4c583fc8260e8d196a2672a991f70c067a672dd8f6b4c1491c5738d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Computational Biology</topic><topic>Gene Ontology</topic><topic>Molecular Sequence Annotation</topic><topic>Original Papers</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrodimitris, Stavros</creatorcontrib><creatorcontrib>van Ham, Roeland C H J</creatorcontrib><creatorcontrib>Reinders, Marcel J T</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrodimitris, Stavros</au><au>van Ham, Roeland C H J</au><au>Reinders, Marcel J T</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving protein function prediction using protein sequence and GO-term similarities</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>35</volume><issue>7</issue><spage>1116</spage><epage>1124</epage><pages>1116-1124</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for computers to learn, in particular the Biological Process ontology, which has the most terms (>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit the redundancy of GO terms and transform them into a more compact latent representation that is easier to predict.
Results
We compare proteins using a sequence similarity profile (SSP) to a set of annotated training proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one based on semantic similarity of terms. We show that these LSDR methods, as well as three existing ones, improve the Critical Assessment of Functional Annotation performance of several function prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art and baseline methods in terms of cross-validated F-measure.
Availability and implementation
Source code for the experiments is available at https://github.com/stamakro/SSP-LSDR.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30169569</pmid><doi>10.1093/bioinformatics/bty751</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3111-4268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-04, Vol.35 (7), p.1116-1124 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449755 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Amino Acid Sequence Computational Biology Gene Ontology Molecular Sequence Annotation Original Papers Software |
title | Improving protein function prediction using protein sequence and GO-term similarities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20protein%20function%20prediction%20using%20protein%20sequence%20and%20GO-term%20similarities&rft.jtitle=Bioinformatics&rft.au=Makrodimitris,%20Stavros&rft.date=2019-04-01&rft.volume=35&rft.issue=7&rft.spage=1116&rft.epage=1124&rft.pages=1116-1124&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty751&rft_dat=%3Cproquest_pubme%3E2098770316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098770316&rft_id=info:pmid/30169569&rft_oup_id=10.1093/bioinformatics/bty751&rfr_iscdi=true |