G-quadruplex dynamics contribute to regulation of mitochondrial gene expression
Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-04, Vol.9 (1), p.5605, Article 5605 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 5605 |
container_title | Scientific reports |
container_volume | 9 |
creator | Falabella, M. Kolesar, J. E. Wallace, C. de Jesus, D. Sun, L. Taguchi, Y. V. Wang, C. Wang, T. Xiang, I. M. Alder, J. K. Maheshan, R. Horne, W. Turek-Herman, J. Pagano, P. J. St. Croix, C. M. Sondheimer, N. Yatsunyk, L. A. Johnson, F. B. Kaufman, B. A. |
description | Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells. |
doi_str_mv | 10.1038/s41598-019-41464-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6447596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202776269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</originalsourceid><addsrcrecordid>eNp9UU1Lw0AQXUTRov0DHiTgObrfm70IUvyCQi96XjbJpE1Js-1uIvbfuzW16sW5zMC8ee8xD6FLgm8IZtlt4EToLMVEp5xwydPtERpRzEVKGaXHv-YzNA5hiWMJqjnRp-iMYc05E2yEZk_pprel79cNfCTltrWrughJ4drO13nfQdK5xMO8b2xXuzZxVbKqO1csXFv62jbJHFpI4GPtIYQIuEAnlW0CjPf9HL09PrxOntPp7Ollcj9NC8Fxl2plKylzLBRXQlOOQeWyIFUuK2YBlBIFrXJBM0IlhlJpYrNSYABaZoyDZufobuBd9_kKygKiX9uYta9X1m-Ns7X5u2nrhZm7dyP5TlFGgus9gXebHkJnlq73bfRsKMVUKUnlToYOqMK7EDxUBwWCzS4HM-RgYg7mKwezjUdXv70dTr6_HgFsAIS4aufgf7T_of0EJPqV3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202776269</pqid></control><display><type>article</type><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</creator><creatorcontrib>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</creatorcontrib><description>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41464-y</identifier><identifier>PMID: 30944353</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 14/32 ; 38 ; 38/71 ; 38/77 ; 38/91 ; 631/337/151/1431 ; 631/45/147 ; 631/80/642/333/1465 ; Animals ; Breakpoints ; Cancer ; Cell Line, Tumor ; Cells, Cultured ; Clonal deletion ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Replication - genetics ; DNA, Mitochondrial - genetics ; G-Quadruplexes ; Gene expression ; Gene Expression - genetics ; Genes, Mitochondrial - genetics ; Genome, Mitochondrial - genetics ; Genomes ; Guanine ; Guanine - metabolism ; HeLa Cells ; Homeostasis ; Humanities and Social Sciences ; Humans ; Mice ; Mice, Inbred BALB C ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; multidisciplinary ; Nucleic acids ; Nucleotide sequence ; Respiratory function ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sequence Deletion - genetics ; Single-stranded DNA ; Transcription</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5605, Article 5605</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</citedby><cites>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</cites><orcidid>0000-0003-4767-4937 ; 0000-0003-3946-0939 ; 0000-0002-7443-7227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30944353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falabella, M.</creatorcontrib><creatorcontrib>Kolesar, J. E.</creatorcontrib><creatorcontrib>Wallace, C.</creatorcontrib><creatorcontrib>de Jesus, D.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Taguchi, Y. V.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Xiang, I. M.</creatorcontrib><creatorcontrib>Alder, J. K.</creatorcontrib><creatorcontrib>Maheshan, R.</creatorcontrib><creatorcontrib>Horne, W.</creatorcontrib><creatorcontrib>Turek-Herman, J.</creatorcontrib><creatorcontrib>Pagano, P. J.</creatorcontrib><creatorcontrib>St. Croix, C. M.</creatorcontrib><creatorcontrib>Sondheimer, N.</creatorcontrib><creatorcontrib>Yatsunyk, L. A.</creatorcontrib><creatorcontrib>Johnson, F. B.</creatorcontrib><creatorcontrib>Kaufman, B. A.</creatorcontrib><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</description><subject>13/51</subject><subject>14/19</subject><subject>14/32</subject><subject>38</subject><subject>38/71</subject><subject>38/77</subject><subject>38/91</subject><subject>631/337/151/1431</subject><subject>631/45/147</subject><subject>631/80/642/333/1465</subject><subject>Animals</subject><subject>Breakpoints</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Replication - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>G-Quadruplexes</subject><subject>Gene expression</subject><subject>Gene Expression - genetics</subject><subject>Genes, Mitochondrial - genetics</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genomes</subject><subject>Guanine</subject><subject>Guanine - metabolism</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>multidisciplinary</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Respiratory function</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Deletion - genetics</subject><subject>Single-stranded DNA</subject><subject>Transcription</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UU1Lw0AQXUTRov0DHiTgObrfm70IUvyCQi96XjbJpE1Js-1uIvbfuzW16sW5zMC8ee8xD6FLgm8IZtlt4EToLMVEp5xwydPtERpRzEVKGaXHv-YzNA5hiWMJqjnRp-iMYc05E2yEZk_pprel79cNfCTltrWrughJ4drO13nfQdK5xMO8b2xXuzZxVbKqO1csXFv62jbJHFpI4GPtIYQIuEAnlW0CjPf9HL09PrxOntPp7Ollcj9NC8Fxl2plKylzLBRXQlOOQeWyIFUuK2YBlBIFrXJBM0IlhlJpYrNSYABaZoyDZufobuBd9_kKygKiX9uYta9X1m-Ns7X5u2nrhZm7dyP5TlFGgus9gXebHkJnlq73bfRsKMVUKUnlToYOqMK7EDxUBwWCzS4HM-RgYg7mKwezjUdXv70dTr6_HgFsAIS4aufgf7T_of0EJPqV3Q</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Falabella, M.</creator><creator>Kolesar, J. E.</creator><creator>Wallace, C.</creator><creator>de Jesus, D.</creator><creator>Sun, L.</creator><creator>Taguchi, Y. V.</creator><creator>Wang, C.</creator><creator>Wang, T.</creator><creator>Xiang, I. M.</creator><creator>Alder, J. K.</creator><creator>Maheshan, R.</creator><creator>Horne, W.</creator><creator>Turek-Herman, J.</creator><creator>Pagano, P. J.</creator><creator>St. Croix, C. M.</creator><creator>Sondheimer, N.</creator><creator>Yatsunyk, L. A.</creator><creator>Johnson, F. B.</creator><creator>Kaufman, B. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4767-4937</orcidid><orcidid>https://orcid.org/0000-0003-3946-0939</orcidid><orcidid>https://orcid.org/0000-0002-7443-7227</orcidid></search><sort><creationdate>20190403</creationdate><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><author>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/51</topic><topic>14/19</topic><topic>14/32</topic><topic>38</topic><topic>38/71</topic><topic>38/77</topic><topic>38/91</topic><topic>631/337/151/1431</topic><topic>631/45/147</topic><topic>631/80/642/333/1465</topic><topic>Animals</topic><topic>Breakpoints</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Replication - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>G-Quadruplexes</topic><topic>Gene expression</topic><topic>Gene Expression - genetics</topic><topic>Genes, Mitochondrial - genetics</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genomes</topic><topic>Guanine</topic><topic>Guanine - metabolism</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>multidisciplinary</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Respiratory function</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Deletion - genetics</topic><topic>Single-stranded DNA</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falabella, M.</creatorcontrib><creatorcontrib>Kolesar, J. E.</creatorcontrib><creatorcontrib>Wallace, C.</creatorcontrib><creatorcontrib>de Jesus, D.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Taguchi, Y. V.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Xiang, I. M.</creatorcontrib><creatorcontrib>Alder, J. K.</creatorcontrib><creatorcontrib>Maheshan, R.</creatorcontrib><creatorcontrib>Horne, W.</creatorcontrib><creatorcontrib>Turek-Herman, J.</creatorcontrib><creatorcontrib>Pagano, P. J.</creatorcontrib><creatorcontrib>St. Croix, C. M.</creatorcontrib><creatorcontrib>Sondheimer, N.</creatorcontrib><creatorcontrib>Yatsunyk, L. A.</creatorcontrib><creatorcontrib>Johnson, F. B.</creatorcontrib><creatorcontrib>Kaufman, B. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falabella, M.</au><au>Kolesar, J. E.</au><au>Wallace, C.</au><au>de Jesus, D.</au><au>Sun, L.</au><au>Taguchi, Y. V.</au><au>Wang, C.</au><au>Wang, T.</au><au>Xiang, I. M.</au><au>Alder, J. K.</au><au>Maheshan, R.</au><au>Horne, W.</au><au>Turek-Herman, J.</au><au>Pagano, P. J.</au><au>St. Croix, C. M.</au><au>Sondheimer, N.</au><au>Yatsunyk, L. A.</au><au>Johnson, F. B.</au><au>Kaufman, B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5605</spage><pages>5605-</pages><artnum>5605</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30944353</pmid><doi>10.1038/s41598-019-41464-y</doi><orcidid>https://orcid.org/0000-0003-4767-4937</orcidid><orcidid>https://orcid.org/0000-0003-3946-0939</orcidid><orcidid>https://orcid.org/0000-0002-7443-7227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-04, Vol.9 (1), p.5605, Article 5605 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6447596 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13/51 14/19 14/32 38 38/71 38/77 38/91 631/337/151/1431 631/45/147 631/80/642/333/1465 Animals Breakpoints Cancer Cell Line, Tumor Cells, Cultured Clonal deletion Deoxyribonucleic acid DNA DNA damage DNA Replication - genetics DNA, Mitochondrial - genetics G-Quadruplexes Gene expression Gene Expression - genetics Genes, Mitochondrial - genetics Genome, Mitochondrial - genetics Genomes Guanine Guanine - metabolism HeLa Cells Homeostasis Humanities and Social Sciences Humans Mice Mice, Inbred BALB C Mitochondria - genetics Mitochondria - metabolism Mitochondrial DNA multidisciplinary Nucleic acids Nucleotide sequence Respiratory function Ribonucleic acid RNA Science Science (multidisciplinary) Sequence Deletion - genetics Single-stranded DNA Transcription |
title | G-quadruplex dynamics contribute to regulation of mitochondrial gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-quadruplex%20dynamics%20contribute%20to%20regulation%20of%20mitochondrial%20gene%20expression&rft.jtitle=Scientific%20reports&rft.au=Falabella,%20M.&rft.date=2019-04-03&rft.volume=9&rft.issue=1&rft.spage=5605&rft.pages=5605-&rft.artnum=5605&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41464-y&rft_dat=%3Cproquest_pubme%3E2202776269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202776269&rft_id=info:pmid/30944353&rfr_iscdi=true |