G-quadruplex dynamics contribute to regulation of mitochondrial gene expression

Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.5605, Article 5605
Hauptverfasser: Falabella, M., Kolesar, J. E., Wallace, C., de Jesus, D., Sun, L., Taguchi, Y. V., Wang, C., Wang, T., Xiang, I. M., Alder, J. K., Maheshan, R., Horne, W., Turek-Herman, J., Pagano, P. J., St. Croix, C. M., Sondheimer, N., Yatsunyk, L. A., Johnson, F. B., Kaufman, B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 5605
container_title Scientific reports
container_volume 9
creator Falabella, M.
Kolesar, J. E.
Wallace, C.
de Jesus, D.
Sun, L.
Taguchi, Y. V.
Wang, C.
Wang, T.
Xiang, I. M.
Alder, J. K.
Maheshan, R.
Horne, W.
Turek-Herman, J.
Pagano, P. J.
St. Croix, C. M.
Sondheimer, N.
Yatsunyk, L. A.
Johnson, F. B.
Kaufman, B. A.
description Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.
doi_str_mv 10.1038/s41598-019-41464-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6447596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202776269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</originalsourceid><addsrcrecordid>eNp9UU1Lw0AQXUTRov0DHiTgObrfm70IUvyCQi96XjbJpE1Js-1uIvbfuzW16sW5zMC8ee8xD6FLgm8IZtlt4EToLMVEp5xwydPtERpRzEVKGaXHv-YzNA5hiWMJqjnRp-iMYc05E2yEZk_pprel79cNfCTltrWrughJ4drO13nfQdK5xMO8b2xXuzZxVbKqO1csXFv62jbJHFpI4GPtIYQIuEAnlW0CjPf9HL09PrxOntPp7Ollcj9NC8Fxl2plKylzLBRXQlOOQeWyIFUuK2YBlBIFrXJBM0IlhlJpYrNSYABaZoyDZufobuBd9_kKygKiX9uYta9X1m-Ns7X5u2nrhZm7dyP5TlFGgus9gXebHkJnlq73bfRsKMVUKUnlToYOqMK7EDxUBwWCzS4HM-RgYg7mKwezjUdXv70dTr6_HgFsAIS4aufgf7T_of0EJPqV3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202776269</pqid></control><display><type>article</type><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</creator><creatorcontrib>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</creatorcontrib><description>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41464-y</identifier><identifier>PMID: 30944353</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 14/32 ; 38 ; 38/71 ; 38/77 ; 38/91 ; 631/337/151/1431 ; 631/45/147 ; 631/80/642/333/1465 ; Animals ; Breakpoints ; Cancer ; Cell Line, Tumor ; Cells, Cultured ; Clonal deletion ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Replication - genetics ; DNA, Mitochondrial - genetics ; G-Quadruplexes ; Gene expression ; Gene Expression - genetics ; Genes, Mitochondrial - genetics ; Genome, Mitochondrial - genetics ; Genomes ; Guanine ; Guanine - metabolism ; HeLa Cells ; Homeostasis ; Humanities and Social Sciences ; Humans ; Mice ; Mice, Inbred BALB C ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; multidisciplinary ; Nucleic acids ; Nucleotide sequence ; Respiratory function ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sequence Deletion - genetics ; Single-stranded DNA ; Transcription</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5605, Article 5605</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</citedby><cites>FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</cites><orcidid>0000-0003-4767-4937 ; 0000-0003-3946-0939 ; 0000-0002-7443-7227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30944353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falabella, M.</creatorcontrib><creatorcontrib>Kolesar, J. E.</creatorcontrib><creatorcontrib>Wallace, C.</creatorcontrib><creatorcontrib>de Jesus, D.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Taguchi, Y. V.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Xiang, I. M.</creatorcontrib><creatorcontrib>Alder, J. K.</creatorcontrib><creatorcontrib>Maheshan, R.</creatorcontrib><creatorcontrib>Horne, W.</creatorcontrib><creatorcontrib>Turek-Herman, J.</creatorcontrib><creatorcontrib>Pagano, P. J.</creatorcontrib><creatorcontrib>St. Croix, C. M.</creatorcontrib><creatorcontrib>Sondheimer, N.</creatorcontrib><creatorcontrib>Yatsunyk, L. A.</creatorcontrib><creatorcontrib>Johnson, F. B.</creatorcontrib><creatorcontrib>Kaufman, B. A.</creatorcontrib><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</description><subject>13/51</subject><subject>14/19</subject><subject>14/32</subject><subject>38</subject><subject>38/71</subject><subject>38/77</subject><subject>38/91</subject><subject>631/337/151/1431</subject><subject>631/45/147</subject><subject>631/80/642/333/1465</subject><subject>Animals</subject><subject>Breakpoints</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Replication - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>G-Quadruplexes</subject><subject>Gene expression</subject><subject>Gene Expression - genetics</subject><subject>Genes, Mitochondrial - genetics</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genomes</subject><subject>Guanine</subject><subject>Guanine - metabolism</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>multidisciplinary</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Respiratory function</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Deletion - genetics</subject><subject>Single-stranded DNA</subject><subject>Transcription</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UU1Lw0AQXUTRov0DHiTgObrfm70IUvyCQi96XjbJpE1Js-1uIvbfuzW16sW5zMC8ee8xD6FLgm8IZtlt4EToLMVEp5xwydPtERpRzEVKGaXHv-YzNA5hiWMJqjnRp-iMYc05E2yEZk_pprel79cNfCTltrWrughJ4drO13nfQdK5xMO8b2xXuzZxVbKqO1csXFv62jbJHFpI4GPtIYQIuEAnlW0CjPf9HL09PrxOntPp7Ollcj9NC8Fxl2plKylzLBRXQlOOQeWyIFUuK2YBlBIFrXJBM0IlhlJpYrNSYABaZoyDZufobuBd9_kKygKiX9uYta9X1m-Ns7X5u2nrhZm7dyP5TlFGgus9gXebHkJnlq73bfRsKMVUKUnlToYOqMK7EDxUBwWCzS4HM-RgYg7mKwezjUdXv70dTr6_HgFsAIS4aufgf7T_of0EJPqV3Q</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Falabella, M.</creator><creator>Kolesar, J. E.</creator><creator>Wallace, C.</creator><creator>de Jesus, D.</creator><creator>Sun, L.</creator><creator>Taguchi, Y. V.</creator><creator>Wang, C.</creator><creator>Wang, T.</creator><creator>Xiang, I. M.</creator><creator>Alder, J. K.</creator><creator>Maheshan, R.</creator><creator>Horne, W.</creator><creator>Turek-Herman, J.</creator><creator>Pagano, P. J.</creator><creator>St. Croix, C. M.</creator><creator>Sondheimer, N.</creator><creator>Yatsunyk, L. A.</creator><creator>Johnson, F. B.</creator><creator>Kaufman, B. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4767-4937</orcidid><orcidid>https://orcid.org/0000-0003-3946-0939</orcidid><orcidid>https://orcid.org/0000-0002-7443-7227</orcidid></search><sort><creationdate>20190403</creationdate><title>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</title><author>Falabella, M. ; Kolesar, J. E. ; Wallace, C. ; de Jesus, D. ; Sun, L. ; Taguchi, Y. V. ; Wang, C. ; Wang, T. ; Xiang, I. M. ; Alder, J. K. ; Maheshan, R. ; Horne, W. ; Turek-Herman, J. ; Pagano, P. J. ; St. Croix, C. M. ; Sondheimer, N. ; Yatsunyk, L. A. ; Johnson, F. B. ; Kaufman, B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-97af66b0574759240e7b6c1fb6f3aee775c2fb5281260ed791a8d50ee2d834e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/51</topic><topic>14/19</topic><topic>14/32</topic><topic>38</topic><topic>38/71</topic><topic>38/77</topic><topic>38/91</topic><topic>631/337/151/1431</topic><topic>631/45/147</topic><topic>631/80/642/333/1465</topic><topic>Animals</topic><topic>Breakpoints</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Replication - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>G-Quadruplexes</topic><topic>Gene expression</topic><topic>Gene Expression - genetics</topic><topic>Genes, Mitochondrial - genetics</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genomes</topic><topic>Guanine</topic><topic>Guanine - metabolism</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>multidisciplinary</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Respiratory function</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Deletion - genetics</topic><topic>Single-stranded DNA</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falabella, M.</creatorcontrib><creatorcontrib>Kolesar, J. E.</creatorcontrib><creatorcontrib>Wallace, C.</creatorcontrib><creatorcontrib>de Jesus, D.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Taguchi, Y. V.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Xiang, I. M.</creatorcontrib><creatorcontrib>Alder, J. K.</creatorcontrib><creatorcontrib>Maheshan, R.</creatorcontrib><creatorcontrib>Horne, W.</creatorcontrib><creatorcontrib>Turek-Herman, J.</creatorcontrib><creatorcontrib>Pagano, P. J.</creatorcontrib><creatorcontrib>St. Croix, C. M.</creatorcontrib><creatorcontrib>Sondheimer, N.</creatorcontrib><creatorcontrib>Yatsunyk, L. A.</creatorcontrib><creatorcontrib>Johnson, F. B.</creatorcontrib><creatorcontrib>Kaufman, B. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falabella, M.</au><au>Kolesar, J. E.</au><au>Wallace, C.</au><au>de Jesus, D.</au><au>Sun, L.</au><au>Taguchi, Y. V.</au><au>Wang, C.</au><au>Wang, T.</au><au>Xiang, I. M.</au><au>Alder, J. K.</au><au>Maheshan, R.</au><au>Horne, W.</au><au>Turek-Herman, J.</au><au>Pagano, P. J.</au><au>St. Croix, C. M.</au><au>Sondheimer, N.</au><au>Yatsunyk, L. A.</au><au>Johnson, F. B.</au><au>Kaufman, B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-quadruplex dynamics contribute to regulation of mitochondrial gene expression</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5605</spage><pages>5605-</pages><artnum>5605</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30944353</pmid><doi>10.1038/s41598-019-41464-y</doi><orcidid>https://orcid.org/0000-0003-4767-4937</orcidid><orcidid>https://orcid.org/0000-0003-3946-0939</orcidid><orcidid>https://orcid.org/0000-0002-7443-7227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-04, Vol.9 (1), p.5605, Article 5605
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6447596
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/51
14/19
14/32
38
38/71
38/77
38/91
631/337/151/1431
631/45/147
631/80/642/333/1465
Animals
Breakpoints
Cancer
Cell Line, Tumor
Cells, Cultured
Clonal deletion
Deoxyribonucleic acid
DNA
DNA damage
DNA Replication - genetics
DNA, Mitochondrial - genetics
G-Quadruplexes
Gene expression
Gene Expression - genetics
Genes, Mitochondrial - genetics
Genome, Mitochondrial - genetics
Genomes
Guanine
Guanine - metabolism
HeLa Cells
Homeostasis
Humanities and Social Sciences
Humans
Mice
Mice, Inbred BALB C
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial DNA
multidisciplinary
Nucleic acids
Nucleotide sequence
Respiratory function
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Sequence Deletion - genetics
Single-stranded DNA
Transcription
title G-quadruplex dynamics contribute to regulation of mitochondrial gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-quadruplex%20dynamics%20contribute%20to%20regulation%20of%20mitochondrial%20gene%20expression&rft.jtitle=Scientific%20reports&rft.au=Falabella,%20M.&rft.date=2019-04-03&rft.volume=9&rft.issue=1&rft.spage=5605&rft.pages=5605-&rft.artnum=5605&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41464-y&rft_dat=%3Cproquest_pubme%3E2202776269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202776269&rft_id=info:pmid/30944353&rfr_iscdi=true