A helicase links upstream ORFs and RNA structure

Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 2019-04, Vol.65 (2), p.453-456
Hauptverfasser: Jankowsky, Eckhard, Guenther, Ulf-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 2
container_start_page 453
container_title Current genetics
container_volume 65
creator Jankowsky, Eckhard
Guenther, Ulf-Peter
description Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.
doi_str_mv 10.1007/s00294-018-0911-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221043045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-1652db459ade3acf4c1d8d1a1c702243f3cd00c942559858b2a8af722d5e5bf63</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoOo4-gBspuHFTPSeXNtkIw-ANBgXRdcikqVY77Zi0gj69GUbHC4irkJzv_EnOR8gewhEC5McBgCqeAsoUFGL6tkYGyBmNO8nWyQAwp6kEybbIdgiPAEilyjfJFgMumZRiQGCUPLi6sia4pK6ap5D089B5Z2bJ9c1ZSExTJDdXoySe9bbrvdshG6Wpg9v9WIfk7uz0dnyRTq7PL8ejSWoFsC7FTNBiyoUyhWPGltxiIQs0aHOglLOS2QLAKk6FUFLIKTXSlDmlhXBiWmZsSE6WufN-OnOFdU3nTa3nvpoZ_6pbU-mflaZ60Pfti844zxRjMeDwI8C3z70LnZ5Vwbq6No1r-6AppQg8TkL8jyKTGeM5XaAHv9DHtvdNnMSCUiiUiAaGBJeU9W0I3pWrdyPohTq9VKejOr1Qp99iz_73D686Pl1FgC6BEEvNvfNfV_-d-g7uyqKy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139159514</pqid></control><display><type>article</type><title>A helicase links upstream ORFs and RNA structure</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Jankowsky, Eckhard ; Guenther, Ulf-Peter</creator><creatorcontrib>Jankowsky, Eckhard ; Guenther, Ulf-Peter</creatorcontrib><description>Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-018-0911-z</identifier><identifier>PMID: 30483885</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>5' Untranslated Regions ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Codon ; Codons ; DNA helicase ; DNA Helicases - metabolism ; Efficiency ; Enzymes ; Gene Expression Regulation, Fungal ; Life Sciences ; Meiosis - genetics ; messenger RNA ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; mRNA ; Open Reading Frames ; Plant Sciences ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Proteomics ; Ribonucleic acid ; RNA ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Translation ; translation (genetics)</subject><ispartof>Current genetics, 2019-04, Vol.65 (2), p.453-456</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Current Genetics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-1652db459ade3acf4c1d8d1a1c702243f3cd00c942559858b2a8af722d5e5bf63</citedby><cites>FETCH-LOGICAL-c503t-1652db459ade3acf4c1d8d1a1c702243f3cd00c942559858b2a8af722d5e5bf63</cites><orcidid>0000-0001-7677-7412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-018-0911-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-018-0911-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30483885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Guenther, Ulf-Peter</creatorcontrib><title>A helicase links upstream ORFs and RNA structure</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.</description><subject>5' Untranslated Regions</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Codon</subject><subject>Codons</subject><subject>DNA helicase</subject><subject>DNA Helicases - metabolism</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Life Sciences</subject><subject>Meiosis - genetics</subject><subject>messenger RNA</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>mRNA</subject><subject>Open Reading Frames</subject><subject>Plant Sciences</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Translation</subject><subject>translation (genetics)</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkctKxDAUhoMoOo4-gBspuHFTPSeXNtkIw-ANBgXRdcikqVY77Zi0gj69GUbHC4irkJzv_EnOR8gewhEC5McBgCqeAsoUFGL6tkYGyBmNO8nWyQAwp6kEybbIdgiPAEilyjfJFgMumZRiQGCUPLi6sia4pK6ap5D089B5Z2bJ9c1ZSExTJDdXoySe9bbrvdshG6Wpg9v9WIfk7uz0dnyRTq7PL8ejSWoFsC7FTNBiyoUyhWPGltxiIQs0aHOglLOS2QLAKk6FUFLIKTXSlDmlhXBiWmZsSE6WufN-OnOFdU3nTa3nvpoZ_6pbU-mflaZ60Pfti844zxRjMeDwI8C3z70LnZ5Vwbq6No1r-6AppQg8TkL8jyKTGeM5XaAHv9DHtvdNnMSCUiiUiAaGBJeU9W0I3pWrdyPohTq9VKejOr1Qp99iz_73D686Pl1FgC6BEEvNvfNfV_-d-g7uyqKy</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Jankowsky, Eckhard</creator><creator>Guenther, Ulf-Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7677-7412</orcidid></search><sort><creationdate>20190401</creationdate><title>A helicase links upstream ORFs and RNA structure</title><author>Jankowsky, Eckhard ; Guenther, Ulf-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-1652db459ade3acf4c1d8d1a1c702243f3cd00c942559858b2a8af722d5e5bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5' Untranslated Regions</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Codon</topic><topic>Codons</topic><topic>DNA helicase</topic><topic>DNA Helicases - metabolism</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Life Sciences</topic><topic>Meiosis - genetics</topic><topic>messenger RNA</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>mRNA</topic><topic>Open Reading Frames</topic><topic>Plant Sciences</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Translation</topic><topic>translation (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Guenther, Ulf-Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankowsky, Eckhard</au><au>Guenther, Ulf-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A helicase links upstream ORFs and RNA structure</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>65</volume><issue>2</issue><spage>453</spage><epage>456</epage><pages>453-456</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30483885</pmid><doi>10.1007/s00294-018-0911-z</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7677-7412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 2019-04, Vol.65 (2), p.453-456
issn 0172-8083
1432-0983
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446933
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 5' Untranslated Regions
Biochemistry
Biomedical and Life Sciences
Cell Biology
Codon
Codons
DNA helicase
DNA Helicases - metabolism
Efficiency
Enzymes
Gene Expression Regulation, Fungal
Life Sciences
Meiosis - genetics
messenger RNA
Microbial Genetics and Genomics
Microbiology
Mini-Review
mRNA
Open Reading Frames
Plant Sciences
Protein Biosynthesis
Protein synthesis
Proteins
Proteomics
Ribonucleic acid
RNA
RNA, Messenger - chemistry
RNA, Messenger - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Translation
translation (genetics)
title A helicase links upstream ORFs and RNA structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20helicase%20links%20upstream%20ORFs%20and%20RNA%20structure&rft.jtitle=Current%20genetics&rft.au=Jankowsky,%20Eckhard&rft.date=2019-04-01&rft.volume=65&rft.issue=2&rft.spage=453&rft.epage=456&rft.pages=453-456&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-018-0911-z&rft_dat=%3Cproquest_pubme%3E2221043045%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139159514&rft_id=info:pmid/30483885&rfr_iscdi=true