cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity

Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2019-04, Vol.20 (4), p.n/a
Hauptverfasser: Liu, Haipeng, Moura‐Alves, Pedro, Pei, Gang, Mollenkopf, Hans‐Joachim, Hurwitz, Robert, Wu, Xiangyang, Wang, Fei, Liu, Siyu, Ma, Mingtong, Fei, Yiyan, Zhu, Chenggang, Koehler, Anne‐Britta, Oberbeck‐Mueller, Dagmar, Hahnke, Karin, Klemm, Marion, Guhlich‐Bornhof, Ute, Ge, Baoxue, Tuukkanen, Anne, Kolbe, Michael, Dorhoi, Anca, Kaufmann, Stefan HE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title EMBO reports
container_volume 20
creator Liu, Haipeng
Moura‐Alves, Pedro
Pei, Gang
Mollenkopf, Hans‐Joachim
Hurwitz, Robert
Wu, Xiangyang
Wang, Fei
Liu, Siyu
Ma, Mingtong
Fei, Yiyan
Zhu, Chenggang
Koehler, Anne‐Britta
Oberbeck‐Mueller, Dagmar
Hahnke, Karin
Klemm, Marion
Guhlich‐Bornhof, Ute
Ge, Baoxue
Tuukkanen, Anne
Kolbe, Michael
Dorhoi, Anca
Kaufmann, Stefan HE
description Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease. Synopsis cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk. Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides. Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization. eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex. Graphical Abstract cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.
doi_str_mv 10.15252/embr.201846293
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193164290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</originalsourceid><addsrcrecordid>eNqFkcFrFDEYxYNYbLt69iYDXrxsm3zJZCYehFraKlQE20LxEjKZZE3JJDWZqd3_vml3u1ZBPIQE8nuP93gIvSZ4j9RQw74ZurQHmLSMg6DP0A5hXMwpadrn6zcAudxGuzlfYYxr0bQv0DbFbQOU8B30XZ8cnFVWaefdqEaTq2xCdmFRRVuZ2zEpbbyfvEqVXmrvdNW7MGlv4uj6Qo-xUnp0N0VauRAermGYghuXL9GWVT6bV-t7hi6Oj84PP81Pv558Pjw4neuaUDqHRoOFltes1sJq1vWUM2JZbUrAXjSWiq4coXusOmo1YKM47gnlXc361tAZ-rDyvZ66wfTahJLay-vkBpWWMion__wJ7odcxBvJGeNEQDF4tzZI8edk8igHl-9rq2DilCUQUaIwELigb_9Cr-KUQqknATAQwmkpNUP7K0qnmHMydhOGYPmwm7zfTW52K4o3Tzts-MehCvB-Bfxy3iz_5yePvnz89tQdr8S56MLCpN-p_xXoDuX8tqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202116351</pqid></control><display><type>article</type><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><source>Springer Nature OA Free Journals</source><creator>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</creator><creatorcontrib>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</creatorcontrib><description>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease. Synopsis cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk. Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides. Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization. eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex. Graphical Abstract cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201846293</identifier><identifier>PMID: 30872316</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Cell Line ; Clathrin ; Crosstalk ; cyclic dinucleotides ; cyclic guanosine monophosphate–adenosine monophosphate synthase ; Deoxyribonucleic acid ; Detection ; Dimerization ; DNA ; EMBO19 ; EMBO23 ; EMBO37 ; Endocytosis ; Endocytosis - genetics ; Endocytosis - immunology ; Eukaryotes ; Extracellular Space ; Hazards ; Host-Pathogen Interactions - immunology ; Humans ; Immune response ; Immunity ; Immunity (Disease) ; Immunity, Innate ; Innate immunity ; Interferon ; Interferon Type I - metabolism ; Internalization ; Macrophages - immunology ; Macrophages - metabolism ; Mammalian cells ; Membrane Proteins - metabolism ; Mice ; Models, Molecular ; Nucleotides, Cyclic - chemistry ; Nucleotides, Cyclic - metabolism ; Nucleotidyltransferases - chemistry ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - metabolism ; pathogen‐associated molecular pattern ; Prokaryotes ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Second Messenger Systems ; Signal Transduction ; Structure-Activity Relationship</subject><ispartof>EMBO reports, 2019-04, Vol.20 (4), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors</rights><rights>2019 The Authors.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</citedby><cites>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</cites><orcidid>0000-0001-9866-8268 ; 0000-0002-3338-6291 ; 0000-0003-1739-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446192/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446192/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.201846293$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30872316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Moura‐Alves, Pedro</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><creatorcontrib>Mollenkopf, Hans‐Joachim</creatorcontrib><creatorcontrib>Hurwitz, Robert</creatorcontrib><creatorcontrib>Wu, Xiangyang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Ma, Mingtong</creatorcontrib><creatorcontrib>Fei, Yiyan</creatorcontrib><creatorcontrib>Zhu, Chenggang</creatorcontrib><creatorcontrib>Koehler, Anne‐Britta</creatorcontrib><creatorcontrib>Oberbeck‐Mueller, Dagmar</creatorcontrib><creatorcontrib>Hahnke, Karin</creatorcontrib><creatorcontrib>Klemm, Marion</creatorcontrib><creatorcontrib>Guhlich‐Bornhof, Ute</creatorcontrib><creatorcontrib>Ge, Baoxue</creatorcontrib><creatorcontrib>Tuukkanen, Anne</creatorcontrib><creatorcontrib>Kolbe, Michael</creatorcontrib><creatorcontrib>Dorhoi, Anca</creatorcontrib><creatorcontrib>Kaufmann, Stefan HE</creatorcontrib><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease. Synopsis cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk. Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides. Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization. eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex. Graphical Abstract cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Clathrin</subject><subject>Crosstalk</subject><subject>cyclic dinucleotides</subject><subject>cyclic guanosine monophosphate–adenosine monophosphate synthase</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>Dimerization</subject><subject>DNA</subject><subject>EMBO19</subject><subject>EMBO23</subject><subject>EMBO37</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Endocytosis - immunology</subject><subject>Eukaryotes</subject><subject>Extracellular Space</subject><subject>Hazards</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunity (Disease)</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Internalization</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Mammalian cells</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Nucleotides, Cyclic - chemistry</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>Nucleotidyltransferases - chemistry</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>pathogen‐associated molecular pattern</subject><subject>Prokaryotes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Second Messenger Systems</subject><subject>Signal Transduction</subject><subject>Structure-Activity Relationship</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFrFDEYxYNYbLt69iYDXrxsm3zJZCYehFraKlQE20LxEjKZZE3JJDWZqd3_vml3u1ZBPIQE8nuP93gIvSZ4j9RQw74ZurQHmLSMg6DP0A5hXMwpadrn6zcAudxGuzlfYYxr0bQv0DbFbQOU8B30XZ8cnFVWaefdqEaTq2xCdmFRRVuZ2zEpbbyfvEqVXmrvdNW7MGlv4uj6Qo-xUnp0N0VauRAermGYghuXL9GWVT6bV-t7hi6Oj84PP81Pv558Pjw4neuaUDqHRoOFltes1sJq1vWUM2JZbUrAXjSWiq4coXusOmo1YKM47gnlXc361tAZ-rDyvZ66wfTahJLay-vkBpWWMion__wJ7odcxBvJGeNEQDF4tzZI8edk8igHl-9rq2DilCUQUaIwELigb_9Cr-KUQqknATAQwmkpNUP7K0qnmHMydhOGYPmwm7zfTW52K4o3Tzts-MehCvB-Bfxy3iz_5yePvnz89tQdr8S56MLCpN-p_xXoDuX8tqo</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Liu, Haipeng</creator><creator>Moura‐Alves, Pedro</creator><creator>Pei, Gang</creator><creator>Mollenkopf, Hans‐Joachim</creator><creator>Hurwitz, Robert</creator><creator>Wu, Xiangyang</creator><creator>Wang, Fei</creator><creator>Liu, Siyu</creator><creator>Ma, Mingtong</creator><creator>Fei, Yiyan</creator><creator>Zhu, Chenggang</creator><creator>Koehler, Anne‐Britta</creator><creator>Oberbeck‐Mueller, Dagmar</creator><creator>Hahnke, Karin</creator><creator>Klemm, Marion</creator><creator>Guhlich‐Bornhof, Ute</creator><creator>Ge, Baoxue</creator><creator>Tuukkanen, Anne</creator><creator>Kolbe, Michael</creator><creator>Dorhoi, Anca</creator><creator>Kaufmann, Stefan HE</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9866-8268</orcidid><orcidid>https://orcid.org/0000-0002-3338-6291</orcidid><orcidid>https://orcid.org/0000-0003-1739-749X</orcidid></search><sort><creationdate>201904</creationdate><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><author>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Clathrin</topic><topic>Crosstalk</topic><topic>cyclic dinucleotides</topic><topic>cyclic guanosine monophosphate–adenosine monophosphate synthase</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>Dimerization</topic><topic>DNA</topic><topic>EMBO19</topic><topic>EMBO23</topic><topic>EMBO37</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Endocytosis - immunology</topic><topic>Eukaryotes</topic><topic>Extracellular Space</topic><topic>Hazards</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunity (Disease)</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Internalization</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Mammalian cells</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Nucleotides, Cyclic - chemistry</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>Nucleotidyltransferases - chemistry</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>pathogen‐associated molecular pattern</topic><topic>Prokaryotes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Second Messenger Systems</topic><topic>Signal Transduction</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Moura‐Alves, Pedro</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><creatorcontrib>Mollenkopf, Hans‐Joachim</creatorcontrib><creatorcontrib>Hurwitz, Robert</creatorcontrib><creatorcontrib>Wu, Xiangyang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Ma, Mingtong</creatorcontrib><creatorcontrib>Fei, Yiyan</creatorcontrib><creatorcontrib>Zhu, Chenggang</creatorcontrib><creatorcontrib>Koehler, Anne‐Britta</creatorcontrib><creatorcontrib>Oberbeck‐Mueller, Dagmar</creatorcontrib><creatorcontrib>Hahnke, Karin</creatorcontrib><creatorcontrib>Klemm, Marion</creatorcontrib><creatorcontrib>Guhlich‐Bornhof, Ute</creatorcontrib><creatorcontrib>Ge, Baoxue</creatorcontrib><creatorcontrib>Tuukkanen, Anne</creatorcontrib><creatorcontrib>Kolbe, Michael</creatorcontrib><creatorcontrib>Dorhoi, Anca</creatorcontrib><creatorcontrib>Kaufmann, Stefan HE</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Haipeng</au><au>Moura‐Alves, Pedro</au><au>Pei, Gang</au><au>Mollenkopf, Hans‐Joachim</au><au>Hurwitz, Robert</au><au>Wu, Xiangyang</au><au>Wang, Fei</au><au>Liu, Siyu</au><au>Ma, Mingtong</au><au>Fei, Yiyan</au><au>Zhu, Chenggang</au><au>Koehler, Anne‐Britta</au><au>Oberbeck‐Mueller, Dagmar</au><au>Hahnke, Karin</au><au>Klemm, Marion</au><au>Guhlich‐Bornhof, Ute</au><au>Ge, Baoxue</au><au>Tuukkanen, Anne</au><au>Kolbe, Michael</au><au>Dorhoi, Anca</au><au>Kaufmann, Stefan HE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2019-04</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease. Synopsis cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk. Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides. Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization. eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex. Graphical Abstract cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30872316</pmid><doi>10.15252/embr.201846293</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9866-8268</orcidid><orcidid>https://orcid.org/0000-0002-3338-6291</orcidid><orcidid>https://orcid.org/0000-0003-1739-749X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1469-221X
ispartof EMBO reports, 2019-04, Vol.20 (4), p.n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446192
source Springer Nature OA Free Journals
subjects Animals
Cell Line
Clathrin
Crosstalk
cyclic dinucleotides
cyclic guanosine monophosphate–adenosine monophosphate synthase
Deoxyribonucleic acid
Detection
Dimerization
DNA
EMBO19
EMBO23
EMBO37
Endocytosis
Endocytosis - genetics
Endocytosis - immunology
Eukaryotes
Extracellular Space
Hazards
Host-Pathogen Interactions - immunology
Humans
Immune response
Immunity
Immunity (Disease)
Immunity, Innate
Innate immunity
Interferon
Interferon Type I - metabolism
Internalization
Macrophages - immunology
Macrophages - metabolism
Mammalian cells
Membrane Proteins - metabolism
Mice
Models, Molecular
Nucleotides, Cyclic - chemistry
Nucleotides, Cyclic - metabolism
Nucleotidyltransferases - chemistry
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
pathogen‐associated molecular pattern
Prokaryotes
Protein Binding
Protein Conformation
Protein Multimerization
Second Messenger Systems
Signal Transduction
Structure-Activity Relationship
title cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=cGAS%20facilitates%20sensing%20of%20extracellular%20cyclic%20dinucleotides%20to%20activate%20innate%20immunity&rft.jtitle=EMBO%20reports&rft.au=Liu,%20Haipeng&rft.date=2019-04&rft.volume=20&rft.issue=4&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201846293&rft_dat=%3Cproquest_C6C%3E2193164290%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202116351&rft_id=info:pmid/30872316&rfr_iscdi=true