cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity
Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2019-04, Vol.20 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | EMBO reports |
container_volume | 20 |
creator | Liu, Haipeng Moura‐Alves, Pedro Pei, Gang Mollenkopf, Hans‐Joachim Hurwitz, Robert Wu, Xiangyang Wang, Fei Liu, Siyu Ma, Mingtong Fei, Yiyan Zhu, Chenggang Koehler, Anne‐Britta Oberbeck‐Mueller, Dagmar Hahnke, Karin Klemm, Marion Guhlich‐Bornhof, Ute Ge, Baoxue Tuukkanen, Anne Kolbe, Michael Dorhoi, Anca Kaufmann, Stefan HE |
description | Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease.
Synopsis
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.
Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides.
Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization.
eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex.
Graphical Abstract
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk. |
doi_str_mv | 10.15252/embr.201846293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193164290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</originalsourceid><addsrcrecordid>eNqFkcFrFDEYxYNYbLt69iYDXrxsm3zJZCYehFraKlQE20LxEjKZZE3JJDWZqd3_vml3u1ZBPIQE8nuP93gIvSZ4j9RQw74ZurQHmLSMg6DP0A5hXMwpadrn6zcAudxGuzlfYYxr0bQv0DbFbQOU8B30XZ8cnFVWaefdqEaTq2xCdmFRRVuZ2zEpbbyfvEqVXmrvdNW7MGlv4uj6Qo-xUnp0N0VauRAermGYghuXL9GWVT6bV-t7hi6Oj84PP81Pv558Pjw4neuaUDqHRoOFltes1sJq1vWUM2JZbUrAXjSWiq4coXusOmo1YKM47gnlXc361tAZ-rDyvZ66wfTahJLay-vkBpWWMion__wJ7odcxBvJGeNEQDF4tzZI8edk8igHl-9rq2DilCUQUaIwELigb_9Cr-KUQqknATAQwmkpNUP7K0qnmHMydhOGYPmwm7zfTW52K4o3Tzts-MehCvB-Bfxy3iz_5yePvnz89tQdr8S56MLCpN-p_xXoDuX8tqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202116351</pqid></control><display><type>article</type><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><source>Springer Nature OA Free Journals</source><creator>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</creator><creatorcontrib>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</creatorcontrib><description>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease.
Synopsis
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.
Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides.
Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization.
eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex.
Graphical Abstract
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201846293</identifier><identifier>PMID: 30872316</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Cell Line ; Clathrin ; Crosstalk ; cyclic dinucleotides ; cyclic guanosine monophosphate–adenosine monophosphate synthase ; Deoxyribonucleic acid ; Detection ; Dimerization ; DNA ; EMBO19 ; EMBO23 ; EMBO37 ; Endocytosis ; Endocytosis - genetics ; Endocytosis - immunology ; Eukaryotes ; Extracellular Space ; Hazards ; Host-Pathogen Interactions - immunology ; Humans ; Immune response ; Immunity ; Immunity (Disease) ; Immunity, Innate ; Innate immunity ; Interferon ; Interferon Type I - metabolism ; Internalization ; Macrophages - immunology ; Macrophages - metabolism ; Mammalian cells ; Membrane Proteins - metabolism ; Mice ; Models, Molecular ; Nucleotides, Cyclic - chemistry ; Nucleotides, Cyclic - metabolism ; Nucleotidyltransferases - chemistry ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - metabolism ; pathogen‐associated molecular pattern ; Prokaryotes ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Second Messenger Systems ; Signal Transduction ; Structure-Activity Relationship</subject><ispartof>EMBO reports, 2019-04, Vol.20 (4), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors</rights><rights>2019 The Authors.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</citedby><cites>FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</cites><orcidid>0000-0001-9866-8268 ; 0000-0002-3338-6291 ; 0000-0003-1739-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446192/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446192/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.201846293$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30872316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Moura‐Alves, Pedro</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><creatorcontrib>Mollenkopf, Hans‐Joachim</creatorcontrib><creatorcontrib>Hurwitz, Robert</creatorcontrib><creatorcontrib>Wu, Xiangyang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Ma, Mingtong</creatorcontrib><creatorcontrib>Fei, Yiyan</creatorcontrib><creatorcontrib>Zhu, Chenggang</creatorcontrib><creatorcontrib>Koehler, Anne‐Britta</creatorcontrib><creatorcontrib>Oberbeck‐Mueller, Dagmar</creatorcontrib><creatorcontrib>Hahnke, Karin</creatorcontrib><creatorcontrib>Klemm, Marion</creatorcontrib><creatorcontrib>Guhlich‐Bornhof, Ute</creatorcontrib><creatorcontrib>Ge, Baoxue</creatorcontrib><creatorcontrib>Tuukkanen, Anne</creatorcontrib><creatorcontrib>Kolbe, Michael</creatorcontrib><creatorcontrib>Dorhoi, Anca</creatorcontrib><creatorcontrib>Kaufmann, Stefan HE</creatorcontrib><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease.
Synopsis
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.
Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides.
Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization.
eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex.
Graphical Abstract
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Clathrin</subject><subject>Crosstalk</subject><subject>cyclic dinucleotides</subject><subject>cyclic guanosine monophosphate–adenosine monophosphate synthase</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>Dimerization</subject><subject>DNA</subject><subject>EMBO19</subject><subject>EMBO23</subject><subject>EMBO37</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Endocytosis - immunology</subject><subject>Eukaryotes</subject><subject>Extracellular Space</subject><subject>Hazards</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunity (Disease)</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Internalization</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Mammalian cells</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Nucleotides, Cyclic - chemistry</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>Nucleotidyltransferases - chemistry</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>pathogen‐associated molecular pattern</subject><subject>Prokaryotes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Second Messenger Systems</subject><subject>Signal Transduction</subject><subject>Structure-Activity Relationship</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFrFDEYxYNYbLt69iYDXrxsm3zJZCYehFraKlQE20LxEjKZZE3JJDWZqd3_vml3u1ZBPIQE8nuP93gIvSZ4j9RQw74ZurQHmLSMg6DP0A5hXMwpadrn6zcAudxGuzlfYYxr0bQv0DbFbQOU8B30XZ8cnFVWaefdqEaTq2xCdmFRRVuZ2zEpbbyfvEqVXmrvdNW7MGlv4uj6Qo-xUnp0N0VauRAermGYghuXL9GWVT6bV-t7hi6Oj84PP81Pv558Pjw4neuaUDqHRoOFltes1sJq1vWUM2JZbUrAXjSWiq4coXusOmo1YKM47gnlXc361tAZ-rDyvZ66wfTahJLay-vkBpWWMion__wJ7odcxBvJGeNEQDF4tzZI8edk8igHl-9rq2DilCUQUaIwELigb_9Cr-KUQqknATAQwmkpNUP7K0qnmHMydhOGYPmwm7zfTW52K4o3Tzts-MehCvB-Bfxy3iz_5yePvnz89tQdr8S56MLCpN-p_xXoDuX8tqo</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Liu, Haipeng</creator><creator>Moura‐Alves, Pedro</creator><creator>Pei, Gang</creator><creator>Mollenkopf, Hans‐Joachim</creator><creator>Hurwitz, Robert</creator><creator>Wu, Xiangyang</creator><creator>Wang, Fei</creator><creator>Liu, Siyu</creator><creator>Ma, Mingtong</creator><creator>Fei, Yiyan</creator><creator>Zhu, Chenggang</creator><creator>Koehler, Anne‐Britta</creator><creator>Oberbeck‐Mueller, Dagmar</creator><creator>Hahnke, Karin</creator><creator>Klemm, Marion</creator><creator>Guhlich‐Bornhof, Ute</creator><creator>Ge, Baoxue</creator><creator>Tuukkanen, Anne</creator><creator>Kolbe, Michael</creator><creator>Dorhoi, Anca</creator><creator>Kaufmann, Stefan HE</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9866-8268</orcidid><orcidid>https://orcid.org/0000-0002-3338-6291</orcidid><orcidid>https://orcid.org/0000-0003-1739-749X</orcidid></search><sort><creationdate>201904</creationdate><title>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</title><author>Liu, Haipeng ; Moura‐Alves, Pedro ; Pei, Gang ; Mollenkopf, Hans‐Joachim ; Hurwitz, Robert ; Wu, Xiangyang ; Wang, Fei ; Liu, Siyu ; Ma, Mingtong ; Fei, Yiyan ; Zhu, Chenggang ; Koehler, Anne‐Britta ; Oberbeck‐Mueller, Dagmar ; Hahnke, Karin ; Klemm, Marion ; Guhlich‐Bornhof, Ute ; Ge, Baoxue ; Tuukkanen, Anne ; Kolbe, Michael ; Dorhoi, Anca ; Kaufmann, Stefan HE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-27c2f286545c9fc4bd3641f45e316d97f39bf399cd0ab3fc20ea60d136b54d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Clathrin</topic><topic>Crosstalk</topic><topic>cyclic dinucleotides</topic><topic>cyclic guanosine monophosphate–adenosine monophosphate synthase</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>Dimerization</topic><topic>DNA</topic><topic>EMBO19</topic><topic>EMBO23</topic><topic>EMBO37</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Endocytosis - immunology</topic><topic>Eukaryotes</topic><topic>Extracellular Space</topic><topic>Hazards</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunity (Disease)</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Internalization</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Mammalian cells</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Nucleotides, Cyclic - chemistry</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>Nucleotidyltransferases - chemistry</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>pathogen‐associated molecular pattern</topic><topic>Prokaryotes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Second Messenger Systems</topic><topic>Signal Transduction</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haipeng</creatorcontrib><creatorcontrib>Moura‐Alves, Pedro</creatorcontrib><creatorcontrib>Pei, Gang</creatorcontrib><creatorcontrib>Mollenkopf, Hans‐Joachim</creatorcontrib><creatorcontrib>Hurwitz, Robert</creatorcontrib><creatorcontrib>Wu, Xiangyang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Ma, Mingtong</creatorcontrib><creatorcontrib>Fei, Yiyan</creatorcontrib><creatorcontrib>Zhu, Chenggang</creatorcontrib><creatorcontrib>Koehler, Anne‐Britta</creatorcontrib><creatorcontrib>Oberbeck‐Mueller, Dagmar</creatorcontrib><creatorcontrib>Hahnke, Karin</creatorcontrib><creatorcontrib>Klemm, Marion</creatorcontrib><creatorcontrib>Guhlich‐Bornhof, Ute</creatorcontrib><creatorcontrib>Ge, Baoxue</creatorcontrib><creatorcontrib>Tuukkanen, Anne</creatorcontrib><creatorcontrib>Kolbe, Michael</creatorcontrib><creatorcontrib>Dorhoi, Anca</creatorcontrib><creatorcontrib>Kaufmann, Stefan HE</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Haipeng</au><au>Moura‐Alves, Pedro</au><au>Pei, Gang</au><au>Mollenkopf, Hans‐Joachim</au><au>Hurwitz, Robert</au><au>Wu, Xiangyang</au><au>Wang, Fei</au><au>Liu, Siyu</au><au>Ma, Mingtong</au><au>Fei, Yiyan</au><au>Zhu, Chenggang</au><au>Koehler, Anne‐Britta</au><au>Oberbeck‐Mueller, Dagmar</au><au>Hahnke, Karin</au><au>Klemm, Marion</au><au>Guhlich‐Bornhof, Ute</au><au>Ge, Baoxue</au><au>Tuukkanen, Anne</au><au>Kolbe, Michael</au><au>Dorhoi, Anca</au><au>Kaufmann, Stefan HE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2019-04</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING‐dependent release of type I IFN. Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe‐ and danger‐associated molecular patterns that contribute to host–microbe crosstalk during health and disease.
Synopsis
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.
Clathrin‐dependent endocytosis facilitates internalization of extracellular cyclic dinucleotides.
Internalized extracellular cyclic dinucleotides (eCDNs) bind cGAS directly, inducing its dimerization.
eCDNs promote DNA sensing by cGAS, and the formation of the cGAS/STING complex.
Graphical Abstract
cGAS senses internalized extracellular cyclic dinucleotides, thereby promoting the formation of a cGAS/STING complex to activate innate immune responses. eCDNs thus are microbe‐ and danger‐associated molecular patterns that contribute to host‐microbe crosstalk.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30872316</pmid><doi>10.15252/embr.201846293</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9866-8268</orcidid><orcidid>https://orcid.org/0000-0002-3338-6291</orcidid><orcidid>https://orcid.org/0000-0003-1739-749X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2019-04, Vol.20 (4), p.n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6446192 |
source | Springer Nature OA Free Journals |
subjects | Animals Cell Line Clathrin Crosstalk cyclic dinucleotides cyclic guanosine monophosphate–adenosine monophosphate synthase Deoxyribonucleic acid Detection Dimerization DNA EMBO19 EMBO23 EMBO37 Endocytosis Endocytosis - genetics Endocytosis - immunology Eukaryotes Extracellular Space Hazards Host-Pathogen Interactions - immunology Humans Immune response Immunity Immunity (Disease) Immunity, Innate Innate immunity Interferon Interferon Type I - metabolism Internalization Macrophages - immunology Macrophages - metabolism Mammalian cells Membrane Proteins - metabolism Mice Models, Molecular Nucleotides, Cyclic - chemistry Nucleotides, Cyclic - metabolism Nucleotidyltransferases - chemistry Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism pathogen‐associated molecular pattern Prokaryotes Protein Binding Protein Conformation Protein Multimerization Second Messenger Systems Signal Transduction Structure-Activity Relationship |
title | cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=cGAS%20facilitates%20sensing%20of%20extracellular%20cyclic%20dinucleotides%20to%20activate%20innate%20immunity&rft.jtitle=EMBO%20reports&rft.au=Liu,%20Haipeng&rft.date=2019-04&rft.volume=20&rft.issue=4&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201846293&rft_dat=%3Cproquest_C6C%3E2193164290%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202116351&rft_id=info:pmid/30872316&rfr_iscdi=true |