Influence of pretreatments on oil absorption of plantain and cassava chips
The objective was to evaluate the effect of pretreatments of CaCl 2 and osmotic dehydration (OD) on oil absorption in plantain and cassava chips. Plantain and cassava slices (1 mm thickness and 35 mm diameter) were prepared. Pretreatment with and without 5% CaCl 2 solution before applying OD with su...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2019-04, Vol.56 (4), p.1909-1917 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1917 |
---|---|
container_issue | 4 |
container_start_page | 1909 |
container_title | Journal of food science and technology |
container_volume | 56 |
creator | Herman-Lara, E. Rodríguez-Miranda, J. Hernández-Santos, B. Juárez-Barrientos, J. M. Gallegos-Marín, I. Solís-Ulloa, D. Martínez-Sánchez, C. E. |
description | The objective was to evaluate the effect of pretreatments of CaCl
2
and osmotic dehydration (OD) on oil absorption in plantain and cassava chips. Plantain and cassava slices (1 mm thickness and 35 mm diameter) were prepared. Pretreatment with and without 5% CaCl
2
solution before applying OD with sucrose solutions at 30 and 45%, and NaCl at 3 and 6% in a product/solution ratio of 1:25, at 40 °C were employed. OD kinetics and diffusivity were estimated by Page’s model and Fick’s law, respectively. Best OD treatments for plantain chips were 45% sucrose with CaCl
2
and 6% NaCl without CaCl
2
. However, for cassava chips, the best OD treatments were 45% sucrose without CaCl
2
and 3% NaCl with CaCl
2
. Page’s model predicted the OD experimental results with an R
2
= 0.94–0.97. Effective diffusivity of water (EDW) and effective diffusivity of solids (EDS) for osmo-dehydrated cassava samples, with and without CaCl
2
, decreased as the concentration of the osmotic solutions was increased. However, in general, the inverse effect was obtained for plantain samples for EDW and EDS. Use of CaCl
2
when applying OD reduced EDW and EDS in plantain and cassava chips. In general, it was observed that when increasing the concentration of the osmotic solution, oil absorption capacity decreased. Treatments that showed the lowest oil absorption were 45% sucrose OD in plantain chips pretreated with CaCl
2
(11.49%) and fresh cassava chips with 45% sucrose OD (10.72%). The results and effectiveness will depend on food, process conditions and type of osmotic agent. |
doi_str_mv | 10.1007/s13197-019-03655-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188816380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-96cda7552267fd6733d579a2a3f30a3ae1208c4f7ad6a0f45fd2d5e58f51b1303</originalsourceid><addsrcrecordid>eNp9kU1P5SAYhYlxokb9Ay4mTdy4qQJv-ejGxJiZUWPiZlyT91LQml7oQGvivx-u1--FbIC8D4dzcgg5YPSYUapOMgPWqpqytqYghahhg-zQVolaN5RvljPlvGZMiG2yn_MDLQu40pxukW2gbSsbLnfI1WXww-yCdVX01ZjclBxOSxemXMVQxX6ocJFjGqd-dS3IgGHCPlQYuspizviIlb3vx7xHfngcstt_2XfJ7e9ff88v6uubP5fnZ9e1bVQz1a20HSohOJfKd1IBdEK1yBE8UAR0jFNtG6-wk0h9I3zHO-GE9oItGFDYJadr3XFeLF1ni9eEgxlTv8T0ZCL25vMk9PfmLj4a2TSgGRSBoxeBFP_NLk9m2WfrhpLMxTkbzhkDrrWSBT38gj7EOYUSz3CmtWYS9MoRX1M2xZyT829mGDWrtsy6LVPaMs9tmZWLnx9jvD157aYAsAZyGYU7l97__kb2P3KzoBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188816380</pqid></control><display><type>article</type><title>Influence of pretreatments on oil absorption of plantain and cassava chips</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herman-Lara, E. ; Rodríguez-Miranda, J. ; Hernández-Santos, B. ; Juárez-Barrientos, J. M. ; Gallegos-Marín, I. ; Solís-Ulloa, D. ; Martínez-Sánchez, C. E.</creator><creatorcontrib>Herman-Lara, E. ; Rodríguez-Miranda, J. ; Hernández-Santos, B. ; Juárez-Barrientos, J. M. ; Gallegos-Marín, I. ; Solís-Ulloa, D. ; Martínez-Sánchez, C. E.</creatorcontrib><description>The objective was to evaluate the effect of pretreatments of CaCl
2
and osmotic dehydration (OD) on oil absorption in plantain and cassava chips. Plantain and cassava slices (1 mm thickness and 35 mm diameter) were prepared. Pretreatment with and without 5% CaCl
2
solution before applying OD with sucrose solutions at 30 and 45%, and NaCl at 3 and 6% in a product/solution ratio of 1:25, at 40 °C were employed. OD kinetics and diffusivity were estimated by Page’s model and Fick’s law, respectively. Best OD treatments for plantain chips were 45% sucrose with CaCl
2
and 6% NaCl without CaCl
2
. However, for cassava chips, the best OD treatments were 45% sucrose without CaCl
2
and 3% NaCl with CaCl
2
. Page’s model predicted the OD experimental results with an R
2
= 0.94–0.97. Effective diffusivity of water (EDW) and effective diffusivity of solids (EDS) for osmo-dehydrated cassava samples, with and without CaCl
2
, decreased as the concentration of the osmotic solutions was increased. However, in general, the inverse effect was obtained for plantain samples for EDW and EDS. Use of CaCl
2
when applying OD reduced EDW and EDS in plantain and cassava chips. In general, it was observed that when increasing the concentration of the osmotic solution, oil absorption capacity decreased. Treatments that showed the lowest oil absorption were 45% sucrose OD in plantain chips pretreated with CaCl
2
(11.49%) and fresh cassava chips with 45% sucrose OD (10.72%). The results and effectiveness will depend on food, process conditions and type of osmotic agent.</description><identifier>ISSN: 0022-1155</identifier><identifier>EISSN: 0975-8402</identifier><identifier>DOI: 10.1007/s13197-019-03655-3</identifier><identifier>PMID: 30996426</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Absorption ; Calcium chloride ; Cassava ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chips ; Dehydration ; Diffusivity ; Edible oils ; Food processing ; Food Science ; Nutrition ; Original ; Original Article ; Osmosis ; Pretreatment ; Sodium chloride ; Sucrose ; Sugar</subject><ispartof>Journal of food science and technology, 2019-04, Vol.56 (4), p.1909-1917</ispartof><rights>Association of Food Scientists & Technologists (India) 2019</rights><rights>Journal of Food Science and Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-96cda7552267fd6733d579a2a3f30a3ae1208c4f7ad6a0f45fd2d5e58f51b1303</citedby><cites>FETCH-LOGICAL-c474t-96cda7552267fd6733d579a2a3f30a3ae1208c4f7ad6a0f45fd2d5e58f51b1303</cites><orcidid>0000-0002-1290-5670 ; 0000-0002-9957-3823 ; 0000-0001-8098-9610 ; 0000-0003-4039-8028 ; 0000-0002-5729-2820 ; 0000-0001-9766-0563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443813/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443813/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30996426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herman-Lara, E.</creatorcontrib><creatorcontrib>Rodríguez-Miranda, J.</creatorcontrib><creatorcontrib>Hernández-Santos, B.</creatorcontrib><creatorcontrib>Juárez-Barrientos, J. M.</creatorcontrib><creatorcontrib>Gallegos-Marín, I.</creatorcontrib><creatorcontrib>Solís-Ulloa, D.</creatorcontrib><creatorcontrib>Martínez-Sánchez, C. E.</creatorcontrib><title>Influence of pretreatments on oil absorption of plantain and cassava chips</title><title>Journal of food science and technology</title><addtitle>J Food Sci Technol</addtitle><addtitle>J Food Sci Technol</addtitle><description>The objective was to evaluate the effect of pretreatments of CaCl
2
and osmotic dehydration (OD) on oil absorption in plantain and cassava chips. Plantain and cassava slices (1 mm thickness and 35 mm diameter) were prepared. Pretreatment with and without 5% CaCl
2
solution before applying OD with sucrose solutions at 30 and 45%, and NaCl at 3 and 6% in a product/solution ratio of 1:25, at 40 °C were employed. OD kinetics and diffusivity were estimated by Page’s model and Fick’s law, respectively. Best OD treatments for plantain chips were 45% sucrose with CaCl
2
and 6% NaCl without CaCl
2
. However, for cassava chips, the best OD treatments were 45% sucrose without CaCl
2
and 3% NaCl with CaCl
2
. Page’s model predicted the OD experimental results with an R
2
= 0.94–0.97. Effective diffusivity of water (EDW) and effective diffusivity of solids (EDS) for osmo-dehydrated cassava samples, with and without CaCl
2
, decreased as the concentration of the osmotic solutions was increased. However, in general, the inverse effect was obtained for plantain samples for EDW and EDS. Use of CaCl
2
when applying OD reduced EDW and EDS in plantain and cassava chips. In general, it was observed that when increasing the concentration of the osmotic solution, oil absorption capacity decreased. Treatments that showed the lowest oil absorption were 45% sucrose OD in plantain chips pretreated with CaCl
2
(11.49%) and fresh cassava chips with 45% sucrose OD (10.72%). The results and effectiveness will depend on food, process conditions and type of osmotic agent.</description><subject>Absorption</subject><subject>Calcium chloride</subject><subject>Cassava</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chips</subject><subject>Dehydration</subject><subject>Diffusivity</subject><subject>Edible oils</subject><subject>Food processing</subject><subject>Food Science</subject><subject>Nutrition</subject><subject>Original</subject><subject>Original Article</subject><subject>Osmosis</subject><subject>Pretreatment</subject><subject>Sodium chloride</subject><subject>Sucrose</subject><subject>Sugar</subject><issn>0022-1155</issn><issn>0975-8402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1P5SAYhYlxokb9Ay4mTdy4qQJv-ejGxJiZUWPiZlyT91LQml7oQGvivx-u1--FbIC8D4dzcgg5YPSYUapOMgPWqpqytqYghahhg-zQVolaN5RvljPlvGZMiG2yn_MDLQu40pxukW2gbSsbLnfI1WXww-yCdVX01ZjclBxOSxemXMVQxX6ocJFjGqd-dS3IgGHCPlQYuspizviIlb3vx7xHfngcstt_2XfJ7e9ff88v6uubP5fnZ9e1bVQz1a20HSohOJfKd1IBdEK1yBE8UAR0jFNtG6-wk0h9I3zHO-GE9oItGFDYJadr3XFeLF1ni9eEgxlTv8T0ZCL25vMk9PfmLj4a2TSgGRSBoxeBFP_NLk9m2WfrhpLMxTkbzhkDrrWSBT38gj7EOYUSz3CmtWYS9MoRX1M2xZyT829mGDWrtsy6LVPaMs9tmZWLnx9jvD157aYAsAZyGYU7l97__kb2P3KzoBQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Herman-Lara, E.</creator><creator>Rodríguez-Miranda, J.</creator><creator>Hernández-Santos, B.</creator><creator>Juárez-Barrientos, J. M.</creator><creator>Gallegos-Marín, I.</creator><creator>Solís-Ulloa, D.</creator><creator>Martínez-Sánchez, C. E.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04S</scope><scope>04W</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1290-5670</orcidid><orcidid>https://orcid.org/0000-0002-9957-3823</orcidid><orcidid>https://orcid.org/0000-0001-8098-9610</orcidid><orcidid>https://orcid.org/0000-0003-4039-8028</orcidid><orcidid>https://orcid.org/0000-0002-5729-2820</orcidid><orcidid>https://orcid.org/0000-0001-9766-0563</orcidid></search><sort><creationdate>20190401</creationdate><title>Influence of pretreatments on oil absorption of plantain and cassava chips</title><author>Herman-Lara, E. ; Rodríguez-Miranda, J. ; Hernández-Santos, B. ; Juárez-Barrientos, J. M. ; Gallegos-Marín, I. ; Solís-Ulloa, D. ; Martínez-Sánchez, C. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-96cda7552267fd6733d579a2a3f30a3ae1208c4f7ad6a0f45fd2d5e58f51b1303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Calcium chloride</topic><topic>Cassava</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chips</topic><topic>Dehydration</topic><topic>Diffusivity</topic><topic>Edible oils</topic><topic>Food processing</topic><topic>Food Science</topic><topic>Nutrition</topic><topic>Original</topic><topic>Original Article</topic><topic>Osmosis</topic><topic>Pretreatment</topic><topic>Sodium chloride</topic><topic>Sucrose</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herman-Lara, E.</creatorcontrib><creatorcontrib>Rodríguez-Miranda, J.</creatorcontrib><creatorcontrib>Hernández-Santos, B.</creatorcontrib><creatorcontrib>Juárez-Barrientos, J. M.</creatorcontrib><creatorcontrib>Gallegos-Marín, I.</creatorcontrib><creatorcontrib>Solís-Ulloa, D.</creatorcontrib><creatorcontrib>Martínez-Sánchez, C. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Business</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of food science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herman-Lara, E.</au><au>Rodríguez-Miranda, J.</au><au>Hernández-Santos, B.</au><au>Juárez-Barrientos, J. M.</au><au>Gallegos-Marín, I.</au><au>Solís-Ulloa, D.</au><au>Martínez-Sánchez, C. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of pretreatments on oil absorption of plantain and cassava chips</atitle><jtitle>Journal of food science and technology</jtitle><stitle>J Food Sci Technol</stitle><addtitle>J Food Sci Technol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>56</volume><issue>4</issue><spage>1909</spage><epage>1917</epage><pages>1909-1917</pages><issn>0022-1155</issn><eissn>0975-8402</eissn><abstract>The objective was to evaluate the effect of pretreatments of CaCl
2
and osmotic dehydration (OD) on oil absorption in plantain and cassava chips. Plantain and cassava slices (1 mm thickness and 35 mm diameter) were prepared. Pretreatment with and without 5% CaCl
2
solution before applying OD with sucrose solutions at 30 and 45%, and NaCl at 3 and 6% in a product/solution ratio of 1:25, at 40 °C were employed. OD kinetics and diffusivity were estimated by Page’s model and Fick’s law, respectively. Best OD treatments for plantain chips were 45% sucrose with CaCl
2
and 6% NaCl without CaCl
2
. However, for cassava chips, the best OD treatments were 45% sucrose without CaCl
2
and 3% NaCl with CaCl
2
. Page’s model predicted the OD experimental results with an R
2
= 0.94–0.97. Effective diffusivity of water (EDW) and effective diffusivity of solids (EDS) for osmo-dehydrated cassava samples, with and without CaCl
2
, decreased as the concentration of the osmotic solutions was increased. However, in general, the inverse effect was obtained for plantain samples for EDW and EDS. Use of CaCl
2
when applying OD reduced EDW and EDS in plantain and cassava chips. In general, it was observed that when increasing the concentration of the osmotic solution, oil absorption capacity decreased. Treatments that showed the lowest oil absorption were 45% sucrose OD in plantain chips pretreated with CaCl
2
(11.49%) and fresh cassava chips with 45% sucrose OD (10.72%). The results and effectiveness will depend on food, process conditions and type of osmotic agent.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>30996426</pmid><doi>10.1007/s13197-019-03655-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1290-5670</orcidid><orcidid>https://orcid.org/0000-0002-9957-3823</orcidid><orcidid>https://orcid.org/0000-0001-8098-9610</orcidid><orcidid>https://orcid.org/0000-0003-4039-8028</orcidid><orcidid>https://orcid.org/0000-0002-5729-2820</orcidid><orcidid>https://orcid.org/0000-0001-9766-0563</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1155 |
ispartof | Journal of food science and technology, 2019-04, Vol.56 (4), p.1909-1917 |
issn | 0022-1155 0975-8402 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443813 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Absorption Calcium chloride Cassava Chemistry Chemistry and Materials Science Chemistry/Food Science Chips Dehydration Diffusivity Edible oils Food processing Food Science Nutrition Original Original Article Osmosis Pretreatment Sodium chloride Sucrose Sugar |
title | Influence of pretreatments on oil absorption of plantain and cassava chips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20pretreatments%20on%20oil%20absorption%20of%20plantain%20and%20cassava%20chips&rft.jtitle=Journal%20of%20food%20science%20and%20technology&rft.au=Herman-Lara,%20E.&rft.date=2019-04-01&rft.volume=56&rft.issue=4&rft.spage=1909&rft.epage=1917&rft.pages=1909-1917&rft.issn=0022-1155&rft.eissn=0975-8402&rft_id=info:doi/10.1007/s13197-019-03655-3&rft_dat=%3Cproquest_pubme%3E2188816380%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188816380&rft_id=info:pmid/30996426&rfr_iscdi=true |