EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks

Commuting network flows are generally asymmetrical, with commuting behaviors bi-directionally balanced between home and work locations, and with weekday commutes providing many opportunities for the spread of infectious diseases via direct and indirect physical contact. The authors use a Markov chai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.5415-5415, Article 5415
Hauptverfasser: Huang, Chung-Yuan, Chin, Wei-Chien-Benny, Wen, Tzai-Hung, Fu, Yu-Hsiang, Tsai, Yu-Shiuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5415
container_issue 1
container_start_page 5415
container_title Scientific reports
container_volume 9
creator Huang, Chung-Yuan
Chin, Wei-Chien-Benny
Wen, Tzai-Hung
Fu, Yu-Hsiang
Tsai, Yu-Shiuan
description Commuting network flows are generally asymmetrical, with commuting behaviors bi-directionally balanced between home and work locations, and with weekday commutes providing many opportunities for the spread of infectious diseases via direct and indirect physical contact. The authors use a Markov chain model and PageRank-like algorithm to construct a novel algorithm called EpiRank to measure infection risk in a spatially confined commuting network on Taiwan island. Data from the country’s 2000 census were used to map epidemic risk distribution as a commuting network function. A daytime parameter was used to integrate forward and backward movement in order to analyze daily commuting patterns. EpiRank algorithm results were tested by comparing calculations with actual disease distributions for the 2009 H1N1 influenza outbreak and enterovirus cases between 2000 and 2008. Results suggest that the bidirectional movement model outperformed models that considered forward or backward direction only in terms of capturing spatial epidemic risk distribution. EpiRank also outperformed models based on network indexes such as PageRank and HITS. According to a sensitivity analysis of the daytime parameter, the backward movement effect is more important than the forward movement effect for understanding a commuting network’s disease diffusion structure. Our evidence supports the use of EpiRank as an alternative network measure for analyzing disease diffusion in a commuting network.
doi_str_mv 10.1038/s41598-019-41719-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201710652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-8b623650ac903309a1128e9b19758db2db79e2c3363cd6d922a503cd6ee8ff443</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIIUsZHmB3IIBPSSi1o-RJrsoYDrOG2BPIA8zgRFrV06kuiSUgr_fajaTdMcwgO5wM7MDncQOib4I8FMfooF4UrmmKi8IJN0yz00prjgOWWU7r-oR-goxhVOh1NVEHWARgwrRpSQY3Q9X7sb0z58zi59BbVrl9lXV7kAtnO-NXV25iKYCNntOoCpMtdm07hpGuiCs9nMN03fDaQr6H778BDfo3cLU0c42r2H6P58fjf7nl9cf_sxm17kltNJl8tSUCY4NlZhltwYQqgEVRI14bIqaVVOFFDLmGC2EpWi1HA8lABysSgKdoi-bHXXfdlAZaHtgqn1OrjGhI32xun_O637qZf-UYtEFoVIAqc7geB_9RA73bhooa5NC76PmlKc1ooFpwn64RV05fuQlrNDYSL44IhuUTb4GAMsns0QrIfI9DYynSLTfyLTMpFOXn7jmfI3oARgW0BMrXYJ4d_sN2SfAABroVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201701654</pqid></control><display><type>article</type><title>EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Huang, Chung-Yuan ; Chin, Wei-Chien-Benny ; Wen, Tzai-Hung ; Fu, Yu-Hsiang ; Tsai, Yu-Shiuan</creator><creatorcontrib>Huang, Chung-Yuan ; Chin, Wei-Chien-Benny ; Wen, Tzai-Hung ; Fu, Yu-Hsiang ; Tsai, Yu-Shiuan</creatorcontrib><description>Commuting network flows are generally asymmetrical, with commuting behaviors bi-directionally balanced between home and work locations, and with weekday commutes providing many opportunities for the spread of infectious diseases via direct and indirect physical contact. The authors use a Markov chain model and PageRank-like algorithm to construct a novel algorithm called EpiRank to measure infection risk in a spatially confined commuting network on Taiwan island. Data from the country’s 2000 census were used to map epidemic risk distribution as a commuting network function. A daytime parameter was used to integrate forward and backward movement in order to analyze daily commuting patterns. EpiRank algorithm results were tested by comparing calculations with actual disease distributions for the 2009 H1N1 influenza outbreak and enterovirus cases between 2000 and 2008. Results suggest that the bidirectional movement model outperformed models that considered forward or backward direction only in terms of capturing spatial epidemic risk distribution. EpiRank also outperformed models based on network indexes such as PageRank and HITS. According to a sensitivity analysis of the daytime parameter, the backward movement effect is more important than the forward movement effect for understanding a commuting network’s disease diffusion structure. Our evidence supports the use of EpiRank as an alternative network measure for analyzing disease diffusion in a commuting network.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41719-8</identifier><identifier>PMID: 30931968</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 692/699 ; 704/844 ; Algorithms ; Commuting ; Computer Simulation ; Daytime ; Disease Outbreaks ; Disease spread ; Epidemics ; Humanities and Social Sciences ; Humans ; Infectious diseases ; Influenza ; Influenza A Virus, H1N1 Subtype - isolation &amp; purification ; Influenza A Virus, H1N1 Subtype - physiology ; Influenza, Human - epidemiology ; Influenza, Human - transmission ; Influenza, Human - virology ; Markov Chains ; Mathematical models ; Models, Theoretical ; multidisciplinary ; Risk Factors ; Science ; Science (multidisciplinary) ; Sensitivity analysis ; Taiwan - epidemiology ; Transportation - methods ; Transportation - statistics &amp; numerical data</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5415-5415, Article 5415</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-8b623650ac903309a1128e9b19758db2db79e2c3363cd6d922a503cd6ee8ff443</citedby><cites>FETCH-LOGICAL-c527t-8b623650ac903309a1128e9b19758db2db79e2c3363cd6d922a503cd6ee8ff443</cites><orcidid>0000-0001-7215-3303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443646/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443646/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30931968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chung-Yuan</creatorcontrib><creatorcontrib>Chin, Wei-Chien-Benny</creatorcontrib><creatorcontrib>Wen, Tzai-Hung</creatorcontrib><creatorcontrib>Fu, Yu-Hsiang</creatorcontrib><creatorcontrib>Tsai, Yu-Shiuan</creatorcontrib><title>EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Commuting network flows are generally asymmetrical, with commuting behaviors bi-directionally balanced between home and work locations, and with weekday commutes providing many opportunities for the spread of infectious diseases via direct and indirect physical contact. The authors use a Markov chain model and PageRank-like algorithm to construct a novel algorithm called EpiRank to measure infection risk in a spatially confined commuting network on Taiwan island. Data from the country’s 2000 census were used to map epidemic risk distribution as a commuting network function. A daytime parameter was used to integrate forward and backward movement in order to analyze daily commuting patterns. EpiRank algorithm results were tested by comparing calculations with actual disease distributions for the 2009 H1N1 influenza outbreak and enterovirus cases between 2000 and 2008. Results suggest that the bidirectional movement model outperformed models that considered forward or backward direction only in terms of capturing spatial epidemic risk distribution. EpiRank also outperformed models based on network indexes such as PageRank and HITS. According to a sensitivity analysis of the daytime parameter, the backward movement effect is more important than the forward movement effect for understanding a commuting network’s disease diffusion structure. Our evidence supports the use of EpiRank as an alternative network measure for analyzing disease diffusion in a commuting network.</description><subject>639/705/1042</subject><subject>692/699</subject><subject>704/844</subject><subject>Algorithms</subject><subject>Commuting</subject><subject>Computer Simulation</subject><subject>Daytime</subject><subject>Disease Outbreaks</subject><subject>Disease spread</subject><subject>Epidemics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza A Virus, H1N1 Subtype - isolation &amp; purification</subject><subject>Influenza A Virus, H1N1 Subtype - physiology</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - transmission</subject><subject>Influenza, Human - virology</subject><subject>Markov Chains</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Risk Factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity analysis</subject><subject>Taiwan - epidemiology</subject><subject>Transportation - methods</subject><subject>Transportation - statistics &amp; numerical data</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uctu2zAQJIIUsZHmB3IIBPSSi1o-RJrsoYDrOG2BPIA8zgRFrV06kuiSUgr_fajaTdMcwgO5wM7MDncQOib4I8FMfooF4UrmmKi8IJN0yz00prjgOWWU7r-oR-goxhVOh1NVEHWARgwrRpSQY3Q9X7sb0z58zi59BbVrl9lXV7kAtnO-NXV25iKYCNntOoCpMtdm07hpGuiCs9nMN03fDaQr6H778BDfo3cLU0c42r2H6P58fjf7nl9cf_sxm17kltNJl8tSUCY4NlZhltwYQqgEVRI14bIqaVVOFFDLmGC2EpWi1HA8lABysSgKdoi-bHXXfdlAZaHtgqn1OrjGhI32xun_O637qZf-UYtEFoVIAqc7geB_9RA73bhooa5NC76PmlKc1ooFpwn64RV05fuQlrNDYSL44IhuUTb4GAMsns0QrIfI9DYynSLTfyLTMpFOXn7jmfI3oARgW0BMrXYJ4d_sN2SfAABroVQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Huang, Chung-Yuan</creator><creator>Chin, Wei-Chien-Benny</creator><creator>Wen, Tzai-Hung</creator><creator>Fu, Yu-Hsiang</creator><creator>Tsai, Yu-Shiuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7215-3303</orcidid></search><sort><creationdate>20190401</creationdate><title>EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks</title><author>Huang, Chung-Yuan ; Chin, Wei-Chien-Benny ; Wen, Tzai-Hung ; Fu, Yu-Hsiang ; Tsai, Yu-Shiuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-8b623650ac903309a1128e9b19758db2db79e2c3363cd6d922a503cd6ee8ff443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/1042</topic><topic>692/699</topic><topic>704/844</topic><topic>Algorithms</topic><topic>Commuting</topic><topic>Computer Simulation</topic><topic>Daytime</topic><topic>Disease Outbreaks</topic><topic>Disease spread</topic><topic>Epidemics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza A Virus, H1N1 Subtype - isolation &amp; purification</topic><topic>Influenza A Virus, H1N1 Subtype - physiology</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - transmission</topic><topic>Influenza, Human - virology</topic><topic>Markov Chains</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Risk Factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity analysis</topic><topic>Taiwan - epidemiology</topic><topic>Transportation - methods</topic><topic>Transportation - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chung-Yuan</creatorcontrib><creatorcontrib>Chin, Wei-Chien-Benny</creatorcontrib><creatorcontrib>Wen, Tzai-Hung</creatorcontrib><creatorcontrib>Fu, Yu-Hsiang</creatorcontrib><creatorcontrib>Tsai, Yu-Shiuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chung-Yuan</au><au>Chin, Wei-Chien-Benny</au><au>Wen, Tzai-Hung</au><au>Fu, Yu-Hsiang</au><au>Tsai, Yu-Shiuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5415</spage><epage>5415</epage><pages>5415-5415</pages><artnum>5415</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Commuting network flows are generally asymmetrical, with commuting behaviors bi-directionally balanced between home and work locations, and with weekday commutes providing many opportunities for the spread of infectious diseases via direct and indirect physical contact. The authors use a Markov chain model and PageRank-like algorithm to construct a novel algorithm called EpiRank to measure infection risk in a spatially confined commuting network on Taiwan island. Data from the country’s 2000 census were used to map epidemic risk distribution as a commuting network function. A daytime parameter was used to integrate forward and backward movement in order to analyze daily commuting patterns. EpiRank algorithm results were tested by comparing calculations with actual disease distributions for the 2009 H1N1 influenza outbreak and enterovirus cases between 2000 and 2008. Results suggest that the bidirectional movement model outperformed models that considered forward or backward direction only in terms of capturing spatial epidemic risk distribution. EpiRank also outperformed models based on network indexes such as PageRank and HITS. According to a sensitivity analysis of the daytime parameter, the backward movement effect is more important than the forward movement effect for understanding a commuting network’s disease diffusion structure. Our evidence supports the use of EpiRank as an alternative network measure for analyzing disease diffusion in a commuting network.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30931968</pmid><doi>10.1038/s41598-019-41719-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7215-3303</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-04, Vol.9 (1), p.5415-5415, Article 5415
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443646
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/705/1042
692/699
704/844
Algorithms
Commuting
Computer Simulation
Daytime
Disease Outbreaks
Disease spread
Epidemics
Humanities and Social Sciences
Humans
Infectious diseases
Influenza
Influenza A Virus, H1N1 Subtype - isolation & purification
Influenza A Virus, H1N1 Subtype - physiology
Influenza, Human - epidemiology
Influenza, Human - transmission
Influenza, Human - virology
Markov Chains
Mathematical models
Models, Theoretical
multidisciplinary
Risk Factors
Science
Science (multidisciplinary)
Sensitivity analysis
Taiwan - epidemiology
Transportation - methods
Transportation - statistics & numerical data
title EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EpiRank:%20Modeling%20Bidirectional%20Disease%20Spread%20in%20Asymmetric%20Commuting%20Networks&rft.jtitle=Scientific%20reports&rft.au=Huang,%20Chung-Yuan&rft.date=2019-04-01&rft.volume=9&rft.issue=1&rft.spage=5415&rft.epage=5415&rft.pages=5415-5415&rft.artnum=5415&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41719-8&rft_dat=%3Cproquest_pubme%3E2201710652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201701654&rft_id=info:pmid/30931968&rfr_iscdi=true