Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections

Abstract Background Multidrug resistance (MDR) is a growing global problem in bacterial community-acquired urinary tract infections (CUTIs). We aimed to propose an easy-to-use clinical prediction model to identify patients with MDR in CUTI. Methods We conducted a retrospective study including 770 pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open Forum Infectious Diseases 2019-04, Vol.6 (4), p.ofz103-ofz103
Hauptverfasser: Ben Ayed, Houda, Koubaa, Makram, Hammami, Fatma, Marrakchi, Chakib, Rekik, Khaoula, Ben Jemaa, Tarak, Maaloul, Imed, Yaich, Sourour, Damak, Jamel, Ben Jemaa, Mounir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ofz103
container_issue 4
container_start_page ofz103
container_title Open Forum Infectious Diseases
container_volume 6
creator Ben Ayed, Houda
Koubaa, Makram
Hammami, Fatma
Marrakchi, Chakib
Rekik, Khaoula
Ben Jemaa, Tarak
Maaloul, Imed
Yaich, Sourour
Damak, Jamel
Ben Jemaa, Mounir
description Abstract Background Multidrug resistance (MDR) is a growing global problem in bacterial community-acquired urinary tract infections (CUTIs). We aimed to propose an easy-to-use clinical prediction model to identify patients with MDR in CUTI. Methods We conducted a retrospective study including 770 patients with documented CUTI diagnosed during 2010–2017. Logistic regression–based prediction scores were calculated based on variables independently associated with MDR. Sensitivities and specificities at various cutoff points were determined, and the area under the receiver operating characteristic curve (AUROC) was computed. Results We found MDR Enterobacteriaceae in 372 cases (45.1%). Multivariate analysis showed that age ≥70 years (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 1.8–3.5), diabetes mellitus (aOR, 1.65; 95% CI, 1.19–2.3), history of urinary tract surgery in the last 12 months (aOR, 4.5; 95% CI, 1.22–17), and previous antimicrobial therapy in the last 3 months (aOR, 4.6; 95% CI, 3–7) were independent risk factors of MDR in CUTI. The results of Hosmer-Lemshow chi-square testing were indicative of good calibration of the model (χ2 = 3.4; P = .49). At a cutoff of ≥2, the score had an AUROC of 0.71, a sensitivity of 70.5%, a specificity of 60%, a positive predictive value of 60%, a negative predictive value of 70%, and an overall diagnostic accuracy of 65%. When the cutoff was raised to 6, the sensitivity dropped (43%), and the specificity increased appreciably (85%). Conclusions We developed a novel scoring system that can reliably identify patients likely to be harboring MDR in CUTI.
doi_str_mv 10.1093/ofid/ofz103
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689479281</galeid><oup_id>10.1093/ofid/ofz103</oup_id><sourcerecordid>A689479281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-39c4c21f026ce31569c3b782bdbaabbc0b4ee39a79ce164f8e70cd38eb72b9803</originalsourceid><addsrcrecordid>eNp9kd9rFDEQxxdRbKl98l3yJIJsmx97u5sX4ThOLbS12PY5JLOTM7KbXJNd5fxH_HfNubXUlxLIDJPvfDLDtyheM3rCqBSnwbouX78YFc-KQy54W7Zy0Tx_lB8Uxyl9p5QyRhe0kS-LA0FlJRcVPyx-X2G0IQ7aA5JgifZkrdMux45cu2HbI7nEn-QaQnR-Qy5Chz1xnlxF7ByMf2tTP7ouTpvyKyaXRu1HsvYjxmA05OA0oMZ90yoMw-TduCuXcDe5jCC3GavjjtzErCVn3mKGBp9eFS-s7hMe38ej4vbj-mb1uTz_8ulstTwvoWrkWAoJFXBmKa8BBVvUEoRpWm46o7UxQE2FKKRuJCCrK9tiQ6ETLZqGG9lScVR8mLnbyQzYAfox6l5toxvyWCpop_5_8e6b2oQfqq6q_F2dAe_uATHcTZhGNbgE2PfaY5iS4pxWteSt5Fl6Mks3ukflvA2ZCPl0ODgIHq3L9WXdyrwbb1lueD83QAwpRbQPczGq9varvf1qtj-r3zxe5UH7z-wseDsLwrR9kvQHuBC94Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204692892</pqid></control><display><type>article</type><title>Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Ben Ayed, Houda ; Koubaa, Makram ; Hammami, Fatma ; Marrakchi, Chakib ; Rekik, Khaoula ; Ben Jemaa, Tarak ; Maaloul, Imed ; Yaich, Sourour ; Damak, Jamel ; Ben Jemaa, Mounir</creator><creatorcontrib>Ben Ayed, Houda ; Koubaa, Makram ; Hammami, Fatma ; Marrakchi, Chakib ; Rekik, Khaoula ; Ben Jemaa, Tarak ; Maaloul, Imed ; Yaich, Sourour ; Damak, Jamel ; Ben Jemaa, Mounir</creatorcontrib><description>Abstract Background Multidrug resistance (MDR) is a growing global problem in bacterial community-acquired urinary tract infections (CUTIs). We aimed to propose an easy-to-use clinical prediction model to identify patients with MDR in CUTI. Methods We conducted a retrospective study including 770 patients with documented CUTI diagnosed during 2010–2017. Logistic regression–based prediction scores were calculated based on variables independently associated with MDR. Sensitivities and specificities at various cutoff points were determined, and the area under the receiver operating characteristic curve (AUROC) was computed. Results We found MDR Enterobacteriaceae in 372 cases (45.1%). Multivariate analysis showed that age ≥70 years (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 1.8–3.5), diabetes mellitus (aOR, 1.65; 95% CI, 1.19–2.3), history of urinary tract surgery in the last 12 months (aOR, 4.5; 95% CI, 1.22–17), and previous antimicrobial therapy in the last 3 months (aOR, 4.6; 95% CI, 3–7) were independent risk factors of MDR in CUTI. The results of Hosmer-Lemshow chi-square testing were indicative of good calibration of the model (χ2 = 3.4; P = .49). At a cutoff of ≥2, the score had an AUROC of 0.71, a sensitivity of 70.5%, a specificity of 60%, a positive predictive value of 60%, a negative predictive value of 70%, and an overall diagnostic accuracy of 65%. When the cutoff was raised to 6, the sensitivity dropped (43%), and the specificity increased appreciably (85%). Conclusions We developed a novel scoring system that can reliably identify patients likely to be harboring MDR in CUTI.</description><identifier>ISSN: 2328-8957</identifier><identifier>EISSN: 2328-8957</identifier><identifier>DOI: 10.1093/ofid/ofz103</identifier><identifier>PMID: 30949542</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Diabetes ; Drug resistance in microorganisms ; Health aspects ; Major ; Medical research ; Medicine, Experimental ; Urinary tract infections</subject><ispartof>Open Forum Infectious Diseases, 2019-04, Vol.6 (4), p.ofz103-ofz103</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Infectious Diseases Society of America. 2019</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-39c4c21f026ce31569c3b782bdbaabbc0b4ee39a79ce164f8e70cd38eb72b9803</citedby><cites>FETCH-LOGICAL-c479t-39c4c21f026ce31569c3b782bdbaabbc0b4ee39a79ce164f8e70cd38eb72b9803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30949542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Ayed, Houda</creatorcontrib><creatorcontrib>Koubaa, Makram</creatorcontrib><creatorcontrib>Hammami, Fatma</creatorcontrib><creatorcontrib>Marrakchi, Chakib</creatorcontrib><creatorcontrib>Rekik, Khaoula</creatorcontrib><creatorcontrib>Ben Jemaa, Tarak</creatorcontrib><creatorcontrib>Maaloul, Imed</creatorcontrib><creatorcontrib>Yaich, Sourour</creatorcontrib><creatorcontrib>Damak, Jamel</creatorcontrib><creatorcontrib>Ben Jemaa, Mounir</creatorcontrib><title>Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections</title><title>Open Forum Infectious Diseases</title><addtitle>Open Forum Infect Dis</addtitle><description>Abstract Background Multidrug resistance (MDR) is a growing global problem in bacterial community-acquired urinary tract infections (CUTIs). We aimed to propose an easy-to-use clinical prediction model to identify patients with MDR in CUTI. Methods We conducted a retrospective study including 770 patients with documented CUTI diagnosed during 2010–2017. Logistic regression–based prediction scores were calculated based on variables independently associated with MDR. Sensitivities and specificities at various cutoff points were determined, and the area under the receiver operating characteristic curve (AUROC) was computed. Results We found MDR Enterobacteriaceae in 372 cases (45.1%). Multivariate analysis showed that age ≥70 years (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 1.8–3.5), diabetes mellitus (aOR, 1.65; 95% CI, 1.19–2.3), history of urinary tract surgery in the last 12 months (aOR, 4.5; 95% CI, 1.22–17), and previous antimicrobial therapy in the last 3 months (aOR, 4.6; 95% CI, 3–7) were independent risk factors of MDR in CUTI. The results of Hosmer-Lemshow chi-square testing were indicative of good calibration of the model (χ2 = 3.4; P = .49). At a cutoff of ≥2, the score had an AUROC of 0.71, a sensitivity of 70.5%, a specificity of 60%, a positive predictive value of 60%, a negative predictive value of 70%, and an overall diagnostic accuracy of 65%. When the cutoff was raised to 6, the sensitivity dropped (43%), and the specificity increased appreciably (85%). Conclusions We developed a novel scoring system that can reliably identify patients likely to be harboring MDR in CUTI.</description><subject>Diabetes</subject><subject>Drug resistance in microorganisms</subject><subject>Health aspects</subject><subject>Major</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Urinary tract infections</subject><issn>2328-8957</issn><issn>2328-8957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kd9rFDEQxxdRbKl98l3yJIJsmx97u5sX4ThOLbS12PY5JLOTM7KbXJNd5fxH_HfNubXUlxLIDJPvfDLDtyheM3rCqBSnwbouX78YFc-KQy54W7Zy0Tx_lB8Uxyl9p5QyRhe0kS-LA0FlJRcVPyx-X2G0IQ7aA5JgifZkrdMux45cu2HbI7nEn-QaQnR-Qy5Chz1xnlxF7ByMf2tTP7ouTpvyKyaXRu1HsvYjxmA05OA0oMZ90yoMw-TduCuXcDe5jCC3GavjjtzErCVn3mKGBp9eFS-s7hMe38ej4vbj-mb1uTz_8ulstTwvoWrkWAoJFXBmKa8BBVvUEoRpWm46o7UxQE2FKKRuJCCrK9tiQ6ETLZqGG9lScVR8mLnbyQzYAfox6l5toxvyWCpop_5_8e6b2oQfqq6q_F2dAe_uATHcTZhGNbgE2PfaY5iS4pxWteSt5Fl6Mks3ukflvA2ZCPl0ODgIHq3L9WXdyrwbb1lueD83QAwpRbQPczGq9varvf1qtj-r3zxe5UH7z-wseDsLwrR9kvQHuBC94Q</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ben Ayed, Houda</creator><creator>Koubaa, Makram</creator><creator>Hammami, Fatma</creator><creator>Marrakchi, Chakib</creator><creator>Rekik, Khaoula</creator><creator>Ben Jemaa, Tarak</creator><creator>Maaloul, Imed</creator><creator>Yaich, Sourour</creator><creator>Damak, Jamel</creator><creator>Ben Jemaa, Mounir</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections</title><author>Ben Ayed, Houda ; Koubaa, Makram ; Hammami, Fatma ; Marrakchi, Chakib ; Rekik, Khaoula ; Ben Jemaa, Tarak ; Maaloul, Imed ; Yaich, Sourour ; Damak, Jamel ; Ben Jemaa, Mounir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-39c4c21f026ce31569c3b782bdbaabbc0b4ee39a79ce164f8e70cd38eb72b9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Diabetes</topic><topic>Drug resistance in microorganisms</topic><topic>Health aspects</topic><topic>Major</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Urinary tract infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Ayed, Houda</creatorcontrib><creatorcontrib>Koubaa, Makram</creatorcontrib><creatorcontrib>Hammami, Fatma</creatorcontrib><creatorcontrib>Marrakchi, Chakib</creatorcontrib><creatorcontrib>Rekik, Khaoula</creatorcontrib><creatorcontrib>Ben Jemaa, Tarak</creatorcontrib><creatorcontrib>Maaloul, Imed</creatorcontrib><creatorcontrib>Yaich, Sourour</creatorcontrib><creatorcontrib>Damak, Jamel</creatorcontrib><creatorcontrib>Ben Jemaa, Mounir</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Open Forum Infectious Diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Ayed, Houda</au><au>Koubaa, Makram</au><au>Hammami, Fatma</au><au>Marrakchi, Chakib</au><au>Rekik, Khaoula</au><au>Ben Jemaa, Tarak</au><au>Maaloul, Imed</au><au>Yaich, Sourour</au><au>Damak, Jamel</au><au>Ben Jemaa, Mounir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections</atitle><jtitle>Open Forum Infectious Diseases</jtitle><addtitle>Open Forum Infect Dis</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>ofz103</spage><epage>ofz103</epage><pages>ofz103-ofz103</pages><issn>2328-8957</issn><eissn>2328-8957</eissn><abstract>Abstract Background Multidrug resistance (MDR) is a growing global problem in bacterial community-acquired urinary tract infections (CUTIs). We aimed to propose an easy-to-use clinical prediction model to identify patients with MDR in CUTI. Methods We conducted a retrospective study including 770 patients with documented CUTI diagnosed during 2010–2017. Logistic regression–based prediction scores were calculated based on variables independently associated with MDR. Sensitivities and specificities at various cutoff points were determined, and the area under the receiver operating characteristic curve (AUROC) was computed. Results We found MDR Enterobacteriaceae in 372 cases (45.1%). Multivariate analysis showed that age ≥70 years (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 1.8–3.5), diabetes mellitus (aOR, 1.65; 95% CI, 1.19–2.3), history of urinary tract surgery in the last 12 months (aOR, 4.5; 95% CI, 1.22–17), and previous antimicrobial therapy in the last 3 months (aOR, 4.6; 95% CI, 3–7) were independent risk factors of MDR in CUTI. The results of Hosmer-Lemshow chi-square testing were indicative of good calibration of the model (χ2 = 3.4; P = .49). At a cutoff of ≥2, the score had an AUROC of 0.71, a sensitivity of 70.5%, a specificity of 60%, a positive predictive value of 60%, a negative predictive value of 70%, and an overall diagnostic accuracy of 65%. When the cutoff was raised to 6, the sensitivity dropped (43%), and the specificity increased appreciably (85%). Conclusions We developed a novel scoring system that can reliably identify patients likely to be harboring MDR in CUTI.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>30949542</pmid><doi>10.1093/ofid/ofz103</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2328-8957
ispartof Open Forum Infectious Diseases, 2019-04, Vol.6 (4), p.ofz103-ofz103
issn 2328-8957
2328-8957
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441566
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Diabetes
Drug resistance in microorganisms
Health aspects
Major
Medical research
Medicine, Experimental
Urinary tract infections
title Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20an%20Easy%20and%20Simple%20New%20Scoring%20Model%20in%20Predicting%20Multidrug-Resistant%20Enterobacteriaceae%20in%20Community-Acquired%20Urinary%20Tract%20Infections&rft.jtitle=Open%20Forum%20Infectious%20Diseases&rft.au=Ben%20Ayed,%20Houda&rft.date=2019-04-01&rft.volume=6&rft.issue=4&rft.spage=ofz103&rft.epage=ofz103&rft.pages=ofz103-ofz103&rft.issn=2328-8957&rft.eissn=2328-8957&rft_id=info:doi/10.1093/ofid/ofz103&rft_dat=%3Cgale_pubme%3EA689479281%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204692892&rft_id=info:pmid/30949542&rft_galeid=A689479281&rft_oup_id=10.1093/ofid/ofz103&rfr_iscdi=true