Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex

CXCR1, a member in G-protein coupled receptor (GPCR) family, binds to chemokine interleukin-8 (IL-8) specifically and transduces signals to mediate immune and inflammatory responses. Despite the importance of CXCR1, high-resolution structure determination is hindered by the challenges in crystalliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.5317-11, Article 5317
Hauptverfasser: Wang, Yang, Park, Jae-Hyun, Lupala, Cecylia Severin, Yun, Ji-Hye, Jin, Zeyu, Huang, Lanqing, Li, Xuanxuan, Tang, Leihan, Lee, Weontae, Liu, Haiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 5317
container_title Scientific reports
container_volume 9
creator Wang, Yang
Park, Jae-Hyun
Lupala, Cecylia Severin
Yun, Ji-Hye
Jin, Zeyu
Huang, Lanqing
Li, Xuanxuan
Tang, Leihan
Lee, Weontae
Liu, Haiguang
description CXCR1, a member in G-protein coupled receptor (GPCR) family, binds to chemokine interleukin-8 (IL-8) specifically and transduces signals to mediate immune and inflammatory responses. Despite the importance of CXCR1, high-resolution structure determination is hindered by the challenges in crystallization. It has been shown that properly designed mutants with enhanced thermostability, together with fusion partner proteins, can be useful to form crystals for GPCR proteins. In this study, in silico protein design was carried out by using homology modeling and molecular dynamics simulations. To validate the computational modeling results, the thermostability of several mutants and the wild type were measured experimentally. Both computational results and experimental data suggest that the mutant L126W has a significant improvement in the thermostability. This study demonstrated that in silico design can guide protein engineering and potentially facilitate protein crystallography research.
doi_str_mv 10.1038/s41598-019-41838-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199872493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-18af5de3dfcab1a8d371c78ddf6f8616bdcb41dda0ac1a4f586b896bf904ccd73</originalsourceid><addsrcrecordid>eNp9kUFrFTEQx4Motjz7BTxIwIuX1UyS3U0ugixWhYJQKniL2ST7Xspusia7xddPb9pXa-vBhDAT8p__ZPgh9BLIWyBMvMscaikqArLiIJio6BN0TAmvK8ooffogP0InOV-SsmoqOcjn6IgRSRvJ6mP0o4vTvC4uYe2ts3hOcXE-YBe2PjiXfNjiJZbrTgfj8LK7PWmKVV5070e_7HEccPe9O4cKX3A87nO83k8Om2I8ul8v0LNBj9md3MUN-nb68aL7XJ19_fSl-3BWmRpgqUDoobaO2cHoHrSwrAXTCmuHZhANNL01PQdrNdEGNB9q0fRCNv0gCTfGtmyD3h9857WfnDUuLEmPak5-0mmvovbq8UvwO7WNV6rhHAgRxeDNnUGKP1eXFzX5bNw46uDimhWlhLSCQdkb9Pof6WVcUyjjKQpSipZyyYqKHlQmxZyTG-4_A0TdMFQHhqowVLcMFS1Frx6OcV_yh1gRsIMgzzdwXPrb-z-2vwHm8KlH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199872493</pqid></control><display><type>article</type><title>Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yang ; Park, Jae-Hyun ; Lupala, Cecylia Severin ; Yun, Ji-Hye ; Jin, Zeyu ; Huang, Lanqing ; Li, Xuanxuan ; Tang, Leihan ; Lee, Weontae ; Liu, Haiguang</creator><creatorcontrib>Wang, Yang ; Park, Jae-Hyun ; Lupala, Cecylia Severin ; Yun, Ji-Hye ; Jin, Zeyu ; Huang, Lanqing ; Li, Xuanxuan ; Tang, Leihan ; Lee, Weontae ; Liu, Haiguang</creatorcontrib><description>CXCR1, a member in G-protein coupled receptor (GPCR) family, binds to chemokine interleukin-8 (IL-8) specifically and transduces signals to mediate immune and inflammatory responses. Despite the importance of CXCR1, high-resolution structure determination is hindered by the challenges in crystallization. It has been shown that properly designed mutants with enhanced thermostability, together with fusion partner proteins, can be useful to form crystals for GPCR proteins. In this study, in silico protein design was carried out by using homology modeling and molecular dynamics simulations. To validate the computational modeling results, the thermostability of several mutants and the wild type were measured experimentally. Both computational results and experimental data suggest that the mutant L126W has a significant improvement in the thermostability. This study demonstrated that in silico design can guide protein engineering and potentially facilitate protein crystallography research.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41838-2</identifier><identifier>PMID: 30926935</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 45/70 ; 631/535/1267 ; 631/57/2266 ; Amino Acid Sequence ; Binding Sites ; Chemokines ; Computer applications ; Crystallization ; Crystallography ; Crystals ; G protein-coupled receptors ; Homology ; Humanities and Social Sciences ; Inflammation ; Interleukin 8 ; Lysozyme ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; multidisciplinary ; Muramidase - chemistry ; Muramidase - genetics ; Muramidase - metabolism ; Mutation ; Protein Binding ; Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Stability ; Proteins ; Receptors, Interleukin-8A - chemistry ; Receptors, Interleukin-8A - genetics ; Receptors, Interleukin-8A - metabolism ; Science ; Science (multidisciplinary) ; Structure-Activity Relationship ; Thermal stability ; Thermodynamics</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.5317-11, Article 5317</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-18af5de3dfcab1a8d371c78ddf6f8616bdcb41dda0ac1a4f586b896bf904ccd73</citedby><cites>FETCH-LOGICAL-c511t-18af5de3dfcab1a8d371c78ddf6f8616bdcb41dda0ac1a4f586b896bf904ccd73</cites><orcidid>0000-0001-7324-6632 ; 0000-0002-5504-9800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Park, Jae-Hyun</creatorcontrib><creatorcontrib>Lupala, Cecylia Severin</creatorcontrib><creatorcontrib>Yun, Ji-Hye</creatorcontrib><creatorcontrib>Jin, Zeyu</creatorcontrib><creatorcontrib>Huang, Lanqing</creatorcontrib><creatorcontrib>Li, Xuanxuan</creatorcontrib><creatorcontrib>Tang, Leihan</creatorcontrib><creatorcontrib>Lee, Weontae</creatorcontrib><creatorcontrib>Liu, Haiguang</creatorcontrib><title>Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>CXCR1, a member in G-protein coupled receptor (GPCR) family, binds to chemokine interleukin-8 (IL-8) specifically and transduces signals to mediate immune and inflammatory responses. Despite the importance of CXCR1, high-resolution structure determination is hindered by the challenges in crystallization. It has been shown that properly designed mutants with enhanced thermostability, together with fusion partner proteins, can be useful to form crystals for GPCR proteins. In this study, in silico protein design was carried out by using homology modeling and molecular dynamics simulations. To validate the computational modeling results, the thermostability of several mutants and the wild type were measured experimentally. Both computational results and experimental data suggest that the mutant L126W has a significant improvement in the thermostability. This study demonstrated that in silico design can guide protein engineering and potentially facilitate protein crystallography research.</description><subject>119/118</subject><subject>45/70</subject><subject>631/535/1267</subject><subject>631/57/2266</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Chemokines</subject><subject>Computer applications</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>G protein-coupled receptors</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Inflammation</subject><subject>Interleukin 8</subject><subject>Lysozyme</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - genetics</subject><subject>Muramidase - metabolism</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Engineering</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Receptors, Interleukin-8A - chemistry</subject><subject>Receptors, Interleukin-8A - genetics</subject><subject>Receptors, Interleukin-8A - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure-Activity Relationship</subject><subject>Thermal stability</subject><subject>Thermodynamics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFrFTEQx4Motjz7BTxIwIuX1UyS3U0ugixWhYJQKniL2ST7Xspusia7xddPb9pXa-vBhDAT8p__ZPgh9BLIWyBMvMscaikqArLiIJio6BN0TAmvK8ooffogP0InOV-SsmoqOcjn6IgRSRvJ6mP0o4vTvC4uYe2ts3hOcXE-YBe2PjiXfNjiJZbrTgfj8LK7PWmKVV5070e_7HEccPe9O4cKX3A87nO83k8Om2I8ul8v0LNBj9md3MUN-nb68aL7XJ19_fSl-3BWmRpgqUDoobaO2cHoHrSwrAXTCmuHZhANNL01PQdrNdEGNB9q0fRCNv0gCTfGtmyD3h9857WfnDUuLEmPak5-0mmvovbq8UvwO7WNV6rhHAgRxeDNnUGKP1eXFzX5bNw46uDimhWlhLSCQdkb9Pof6WVcUyjjKQpSipZyyYqKHlQmxZyTG-4_A0TdMFQHhqowVLcMFS1Frx6OcV_yh1gRsIMgzzdwXPrb-z-2vwHm8KlH</recordid><startdate>20190329</startdate><enddate>20190329</enddate><creator>Wang, Yang</creator><creator>Park, Jae-Hyun</creator><creator>Lupala, Cecylia Severin</creator><creator>Yun, Ji-Hye</creator><creator>Jin, Zeyu</creator><creator>Huang, Lanqing</creator><creator>Li, Xuanxuan</creator><creator>Tang, Leihan</creator><creator>Lee, Weontae</creator><creator>Liu, Haiguang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7324-6632</orcidid><orcidid>https://orcid.org/0000-0002-5504-9800</orcidid></search><sort><creationdate>20190329</creationdate><title>Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex</title><author>Wang, Yang ; Park, Jae-Hyun ; Lupala, Cecylia Severin ; Yun, Ji-Hye ; Jin, Zeyu ; Huang, Lanqing ; Li, Xuanxuan ; Tang, Leihan ; Lee, Weontae ; Liu, Haiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-18af5de3dfcab1a8d371c78ddf6f8616bdcb41dda0ac1a4f586b896bf904ccd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>45/70</topic><topic>631/535/1267</topic><topic>631/57/2266</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Chemokines</topic><topic>Computer applications</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>G protein-coupled receptors</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Inflammation</topic><topic>Interleukin 8</topic><topic>Lysozyme</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - genetics</topic><topic>Muramidase - metabolism</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Engineering</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Receptors, Interleukin-8A - chemistry</topic><topic>Receptors, Interleukin-8A - genetics</topic><topic>Receptors, Interleukin-8A - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure-Activity Relationship</topic><topic>Thermal stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Park, Jae-Hyun</creatorcontrib><creatorcontrib>Lupala, Cecylia Severin</creatorcontrib><creatorcontrib>Yun, Ji-Hye</creatorcontrib><creatorcontrib>Jin, Zeyu</creatorcontrib><creatorcontrib>Huang, Lanqing</creatorcontrib><creatorcontrib>Li, Xuanxuan</creatorcontrib><creatorcontrib>Tang, Leihan</creatorcontrib><creatorcontrib>Lee, Weontae</creatorcontrib><creatorcontrib>Liu, Haiguang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Park, Jae-Hyun</au><au>Lupala, Cecylia Severin</au><au>Yun, Ji-Hye</au><au>Jin, Zeyu</au><au>Huang, Lanqing</au><au>Li, Xuanxuan</au><au>Tang, Leihan</au><au>Lee, Weontae</au><au>Liu, Haiguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5317</spage><epage>11</epage><pages>5317-11</pages><artnum>5317</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>CXCR1, a member in G-protein coupled receptor (GPCR) family, binds to chemokine interleukin-8 (IL-8) specifically and transduces signals to mediate immune and inflammatory responses. Despite the importance of CXCR1, high-resolution structure determination is hindered by the challenges in crystallization. It has been shown that properly designed mutants with enhanced thermostability, together with fusion partner proteins, can be useful to form crystals for GPCR proteins. In this study, in silico protein design was carried out by using homology modeling and molecular dynamics simulations. To validate the computational modeling results, the thermostability of several mutants and the wild type were measured experimentally. Both computational results and experimental data suggest that the mutant L126W has a significant improvement in the thermostability. This study demonstrated that in silico design can guide protein engineering and potentially facilitate protein crystallography research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30926935</pmid><doi>10.1038/s41598-019-41838-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7324-6632</orcidid><orcidid>https://orcid.org/0000-0002-5504-9800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-03, Vol.9 (1), p.5317-11, Article 5317
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441008
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 119/118
45/70
631/535/1267
631/57/2266
Amino Acid Sequence
Binding Sites
Chemokines
Computer applications
Crystallization
Crystallography
Crystals
G protein-coupled receptors
Homology
Humanities and Social Sciences
Inflammation
Interleukin 8
Lysozyme
Molecular Docking Simulation
Molecular Dynamics Simulation
multidisciplinary
Muramidase - chemistry
Muramidase - genetics
Muramidase - metabolism
Mutation
Protein Binding
Protein Engineering
Protein Interaction Domains and Motifs
Protein Stability
Proteins
Receptors, Interleukin-8A - chemistry
Receptors, Interleukin-8A - genetics
Receptors, Interleukin-8A - metabolism
Science
Science (multidisciplinary)
Structure-Activity Relationship
Thermal stability
Thermodynamics
title Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20aided%20protein%20engineering%20to%20enhance%20the%20thermo-stability%20of%20CXCR1-%20T4%20lysozyme%20complex&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yang&rft.date=2019-03-29&rft.volume=9&rft.issue=1&rft.spage=5317&rft.epage=11&rft.pages=5317-11&rft.artnum=5317&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41838-2&rft_dat=%3Cproquest_pubme%3E2199872493%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199872493&rft_id=info:pmid/30926935&rfr_iscdi=true