Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts
Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclea...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-03, Vol.9 (1), p.5369-17, Article 5369 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 5369 |
container_title | Scientific reports |
container_volume | 9 |
creator | Gillespie, Zoe E. Wang, Chenxuan Vadan, Flaviu Yu, Topaza Y. Ausió, Juan Kusalik, Anthony Eskiw, Christopher H. |
description | Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response. |
doi_str_mv | 10.1038/s41598-019-41839-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199869841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a420a54287b13e0ba9146859c62addb8e27d35f9f2f306ccb921048a75b88dde3</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonRqNH9Ax5MEy9eqgzQLlxMjPErWaMHPRNK6S7ahRWoxn8vun4f5DIk88w77-RFaAfwAWDKDyODSvASgygZcCpKWEGbBLOqJJSQ1R__DTSK8R7nVxHBQKyjDYoFqXnFNtHtlUmdD3PrCuvaQZtYpJkpjm9KKFJQLupgF8l6V3RKJx8KZ9KzDw-ZLlyeU33RmvfS2Sb4plcxxW201qk-mtFH3UJ3Z6e3Jxfl5Pr88uR4UuoKIJWKEawqRvi4AWpwowSw7Eromqi2bbgh45ZWnehIR3GtdSMIYMbVuGo4b1tDt9DRUncxNHPTauOy5V4ugp2r8CK9svJ3x9mZnPonWTMGGNMssP8hEPzjYGKScxu16XvljB-iJATjMQchWEb3_qD3fggunydJBngtOINMkSWlg48xmO7LDGD5lptc5iZzbvI9N_k2tPvzjK-Rz5QyQJdAzC03NeF79z-yr7Vto-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199869841</pqid></control><display><type>article</type><title>Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gillespie, Zoe E. ; Wang, Chenxuan ; Vadan, Flaviu ; Yu, Topaza Y. ; Ausió, Juan ; Kusalik, Anthony ; Eskiw, Christopher H.</creator><creatorcontrib>Gillespie, Zoe E. ; Wang, Chenxuan ; Vadan, Flaviu ; Yu, Topaza Y. ; Ausió, Juan ; Kusalik, Anthony ; Eskiw, Christopher H.</creatorcontrib><description>Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41839-1</identifier><identifier>PMID: 30926854</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/32 ; 38 ; 38/39 ; 38/91 ; 45 ; 45/15 ; 631/208/199 ; 631/337/2019 ; 631/337/572 ; Activator protein 1 ; Antidiabetics ; Cell culture ; Cell death ; Cell proliferation ; Cells, Cultured ; Chromatin ; Chromosomes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Dietary restrictions ; Fibroblasts ; Fibroblasts - metabolism ; Forkhead protein ; FOXO3 protein ; Gene expression ; Genomes ; Humanities and Social Sciences ; Humans ; Hypoglycemic Agents - pharmacology ; Immunoprecipitation ; Life span ; Metformin ; Metformin - pharmacology ; multidisciplinary ; Rapamycin ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Serum response factor ; Skin ; Skin - cytology ; Skin - metabolism ; Transcription Factor AP-1 - metabolism ; Transcription factors</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.5369-17, Article 5369</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a420a54287b13e0ba9146859c62addb8e27d35f9f2f306ccb921048a75b88dde3</citedby><cites>FETCH-LOGICAL-c511t-a420a54287b13e0ba9146859c62addb8e27d35f9f2f306ccb921048a75b88dde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillespie, Zoe E.</creatorcontrib><creatorcontrib>Wang, Chenxuan</creatorcontrib><creatorcontrib>Vadan, Flaviu</creatorcontrib><creatorcontrib>Yu, Topaza Y.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Kusalik, Anthony</creatorcontrib><creatorcontrib>Eskiw, Christopher H.</creatorcontrib><title>Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response.</description><subject>14</subject><subject>14/32</subject><subject>38</subject><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>45/15</subject><subject>631/208/199</subject><subject>631/337/2019</subject><subject>631/337/572</subject><subject>Activator protein 1</subject><subject>Antidiabetics</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell proliferation</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Dietary restrictions</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Forkhead protein</subject><subject>FOXO3 protein</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Immunoprecipitation</subject><subject>Life span</subject><subject>Metformin</subject><subject>Metformin - pharmacology</subject><subject>multidisciplinary</subject><subject>Rapamycin</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serum response factor</subject><subject>Skin</subject><subject>Skin - cytology</subject><subject>Skin - metabolism</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PxCAQhonRqNH9Ax5MEy9eqgzQLlxMjPErWaMHPRNK6S7ahRWoxn8vun4f5DIk88w77-RFaAfwAWDKDyODSvASgygZcCpKWEGbBLOqJJSQ1R__DTSK8R7nVxHBQKyjDYoFqXnFNtHtlUmdD3PrCuvaQZtYpJkpjm9KKFJQLupgF8l6V3RKJx8KZ9KzDw-ZLlyeU33RmvfS2Sb4plcxxW201qk-mtFH3UJ3Z6e3Jxfl5Pr88uR4UuoKIJWKEawqRvi4AWpwowSw7Eromqi2bbgh45ZWnehIR3GtdSMIYMbVuGo4b1tDt9DRUncxNHPTauOy5V4ugp2r8CK9svJ3x9mZnPonWTMGGNMssP8hEPzjYGKScxu16XvljB-iJATjMQchWEb3_qD3fggunydJBngtOINMkSWlg48xmO7LDGD5lptc5iZzbvI9N_k2tPvzjK-Rz5QyQJdAzC03NeF79z-yr7Vto-M</recordid><startdate>20190329</startdate><enddate>20190329</enddate><creator>Gillespie, Zoe E.</creator><creator>Wang, Chenxuan</creator><creator>Vadan, Flaviu</creator><creator>Yu, Topaza Y.</creator><creator>Ausió, Juan</creator><creator>Kusalik, Anthony</creator><creator>Eskiw, Christopher H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190329</creationdate><title>Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts</title><author>Gillespie, Zoe E. ; Wang, Chenxuan ; Vadan, Flaviu ; Yu, Topaza Y. ; Ausió, Juan ; Kusalik, Anthony ; Eskiw, Christopher H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a420a54287b13e0ba9146859c62addb8e27d35f9f2f306ccb921048a75b88dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14</topic><topic>14/32</topic><topic>38</topic><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>45/15</topic><topic>631/208/199</topic><topic>631/337/2019</topic><topic>631/337/572</topic><topic>Activator protein 1</topic><topic>Antidiabetics</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell proliferation</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Dietary restrictions</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Forkhead protein</topic><topic>FOXO3 protein</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Immunoprecipitation</topic><topic>Life span</topic><topic>Metformin</topic><topic>Metformin - pharmacology</topic><topic>multidisciplinary</topic><topic>Rapamycin</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serum response factor</topic><topic>Skin</topic><topic>Skin - cytology</topic><topic>Skin - metabolism</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillespie, Zoe E.</creatorcontrib><creatorcontrib>Wang, Chenxuan</creatorcontrib><creatorcontrib>Vadan, Flaviu</creatorcontrib><creatorcontrib>Yu, Topaza Y.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Kusalik, Anthony</creatorcontrib><creatorcontrib>Eskiw, Christopher H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillespie, Zoe E.</au><au>Wang, Chenxuan</au><au>Vadan, Flaviu</au><au>Yu, Topaza Y.</au><au>Ausió, Juan</au><au>Kusalik, Anthony</au><au>Eskiw, Christopher H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5369</spage><epage>17</epage><pages>5369-17</pages><artnum>5369</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30926854</pmid><doi>10.1038/s41598-019-41839-1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.5369-17, Article 5369 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6441003 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 14 14/32 38 38/39 38/91 45 45/15 631/208/199 631/337/2019 631/337/572 Activator protein 1 Antidiabetics Cell culture Cell death Cell proliferation Cells, Cultured Chromatin Chromosomes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Dietary restrictions Fibroblasts Fibroblasts - metabolism Forkhead protein FOXO3 protein Gene expression Genomes Humanities and Social Sciences Humans Hypoglycemic Agents - pharmacology Immunoprecipitation Life span Metformin Metformin - pharmacology multidisciplinary Rapamycin Ribonucleic acid RNA Science Science (multidisciplinary) Serum response factor Skin Skin - cytology Skin - metabolism Transcription Factor AP-1 - metabolism Transcription factors |
title | Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20induces%20the%20AP-1%20transcription%20factor%20network%20in%20normal%20dermal%20fibroblasts&rft.jtitle=Scientific%20reports&rft.au=Gillespie,%20Zoe%20E.&rft.date=2019-03-29&rft.volume=9&rft.issue=1&rft.spage=5369&rft.epage=17&rft.pages=5369-17&rft.artnum=5369&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41839-1&rft_dat=%3Cproquest_pubme%3E2199869841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199869841&rft_id=info:pmid/30926854&rfr_iscdi=true |