Control of the Nitrogen Isotope Composition of the Fungal Biomass: Evidence of Microbial Nitrogen Use Efficiency
Changes in 15N/14N in the soil microbial biomass during nitrogen (N) mineralization have been hypothesized to influence 15N/14N in soil organic matter among ecosystem sites. However, a direct experimental test of this mechanism has not yet been performed. To evaluate the potential control of microbi...
Gespeichert in:
Veröffentlicht in: | Microbes and Environments 2019, Vol.34(1), pp.5-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Changes in 15N/14N in the soil microbial biomass during nitrogen (N) mineralization have been hypothesized to influence 15N/14N in soil organic matter among ecosystem sites. However, a direct experimental test of this mechanism has not yet been performed. To evaluate the potential control of microbial N mineralization on the natural N isotope composition, we cultured fungi (Aspergillus oryzae) in five types of media of varying C:N ratios of 5, 10, 30, 50, and 100 for 4 d, and tracked changes in δ15N in the microbial biomass, NH4+, and dissolved organic N (DON: glycine) over the course of the experiment. High rates of NH4+ excretion from A. oryzae were accompanied by an increase in δ15N in the microbial biomass in low C:N media (i.e., C/N |
---|---|
ISSN: | 1342-6311 1347-4405 |
DOI: | 10.1264/jsme2.ME18082 |