Coordination Chemistry of a Molecular Pentafoil Knot
The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Ea...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-03, Vol.141 (9), p.3952-3958 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3958 |
---|---|
container_issue | 9 |
container_start_page | 3952 |
container_title | Journal of the American Chemical Society |
container_volume | 141 |
creator | Zhang, Liang Stephens, Alexander J Lemonnier, Jean-François Pirvu, Lucian Vitorica-Yrezabal, Iñigo J Robinson, Christopher J Leigh, David A |
description | The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes. |
doi_str_mv | 10.1021/jacs.8b12548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237543096</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRbK3ePEuOHozOPrN7EST4wooe9Lxsk12bkmbrbiL0vzeltSoInoZhvvnN40PoGMM5BoIvZqaI53KCCWdyBw0xJ5ByTMQuGgIASTMp6AAdxDjrU0Yk3kcDChkjjMIQsdz7UFaNaSvfJPnUzqvYhmXiXWKSR1_boqtNSJ5t0xrnqzp5aHx7iPacqaM92sQRer25fsnv0vHT7X1-NU4N49CmCgtmQInCqZKBo8YoasBYoERgkVlbKsZwYakAXGLilCqzwslSUakcl5aO0OWau-gmc1sW_RLB1HoRqrkJS-1NpX9Xmmqq3_yHFoxKLmUPON0Agn_vbGx1f15h69o01ndRE0Iz3v9Bif-lWDJOBIUV9WwtLYKPMVi33QiDXnmiV57ojSe9_OTnFVvxlwnfo1ddM9-Fpn_q36xPQiqUeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184526308</pqid></control><display><type>article</type><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><source>American Chemical Society Journals</source><creator>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</creator><creatorcontrib>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</creatorcontrib><description>The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b12548</identifier><identifier>PMID: 30742430</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetonitrile ; binding capacity ; calorimetry ; cations ; chlorides ; cobalt ; copper ; crystals ; electrostatic interactions ; hydrogen bonding ; iron ; ligands ; mass spectrometry ; metal ions ; nickel ; nuclear magnetic resonance spectroscopy ; titration ; X-ray diffraction ; zinc</subject><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (9), p.3952-3958</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</citedby><cites>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</cites><orcidid>0000-0001-8605-8681 ; 0000-0001-6146-566X ; 0000-0002-1202-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b12548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b12548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30742430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Stephens, Alexander J</creatorcontrib><creatorcontrib>Lemonnier, Jean-François</creatorcontrib><creatorcontrib>Pirvu, Lucian</creatorcontrib><creatorcontrib>Vitorica-Yrezabal, Iñigo J</creatorcontrib><creatorcontrib>Robinson, Christopher J</creatorcontrib><creatorcontrib>Leigh, David A</creatorcontrib><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</description><subject>acetonitrile</subject><subject>binding capacity</subject><subject>calorimetry</subject><subject>cations</subject><subject>chlorides</subject><subject>cobalt</subject><subject>copper</subject><subject>crystals</subject><subject>electrostatic interactions</subject><subject>hydrogen bonding</subject><subject>iron</subject><subject>ligands</subject><subject>mass spectrometry</subject><subject>metal ions</subject><subject>nickel</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>titration</subject><subject>X-ray diffraction</subject><subject>zinc</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRbK3ePEuOHozOPrN7EST4wooe9Lxsk12bkmbrbiL0vzeltSoInoZhvvnN40PoGMM5BoIvZqaI53KCCWdyBw0xJ5ByTMQuGgIASTMp6AAdxDjrU0Yk3kcDChkjjMIQsdz7UFaNaSvfJPnUzqvYhmXiXWKSR1_boqtNSJ5t0xrnqzp5aHx7iPacqaM92sQRer25fsnv0vHT7X1-NU4N49CmCgtmQInCqZKBo8YoasBYoERgkVlbKsZwYakAXGLilCqzwslSUakcl5aO0OWau-gmc1sW_RLB1HoRqrkJS-1NpX9Xmmqq3_yHFoxKLmUPON0Agn_vbGx1f15h69o01ndRE0Iz3v9Bif-lWDJOBIUV9WwtLYKPMVi33QiDXnmiV57ojSe9_OTnFVvxlwnfo1ddM9-Fpn_q36xPQiqUeA</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Zhang, Liang</creator><creator>Stephens, Alexander J</creator><creator>Lemonnier, Jean-François</creator><creator>Pirvu, Lucian</creator><creator>Vitorica-Yrezabal, Iñigo J</creator><creator>Robinson, Christopher J</creator><creator>Leigh, David A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8605-8681</orcidid><orcidid>https://orcid.org/0000-0001-6146-566X</orcidid><orcidid>https://orcid.org/0000-0002-1202-4507</orcidid></search><sort><creationdate>20190306</creationdate><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><author>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acetonitrile</topic><topic>binding capacity</topic><topic>calorimetry</topic><topic>cations</topic><topic>chlorides</topic><topic>cobalt</topic><topic>copper</topic><topic>crystals</topic><topic>electrostatic interactions</topic><topic>hydrogen bonding</topic><topic>iron</topic><topic>ligands</topic><topic>mass spectrometry</topic><topic>metal ions</topic><topic>nickel</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>titration</topic><topic>X-ray diffraction</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Stephens, Alexander J</creatorcontrib><creatorcontrib>Lemonnier, Jean-François</creatorcontrib><creatorcontrib>Pirvu, Lucian</creatorcontrib><creatorcontrib>Vitorica-Yrezabal, Iñigo J</creatorcontrib><creatorcontrib>Robinson, Christopher J</creatorcontrib><creatorcontrib>Leigh, David A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liang</au><au>Stephens, Alexander J</au><au>Lemonnier, Jean-François</au><au>Pirvu, Lucian</au><au>Vitorica-Yrezabal, Iñigo J</au><au>Robinson, Christopher J</au><au>Leigh, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination Chemistry of a Molecular Pentafoil Knot</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-06</date><risdate>2019</risdate><volume>141</volume><issue>9</issue><spage>3952</spage><epage>3958</epage><pages>3952-3958</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30742430</pmid><doi>10.1021/jacs.8b12548</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8605-8681</orcidid><orcidid>https://orcid.org/0000-0001-6146-566X</orcidid><orcidid>https://orcid.org/0000-0002-1202-4507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2019-03, Vol.141 (9), p.3952-3958 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438588 |
source | American Chemical Society Journals |
subjects | acetonitrile binding capacity calorimetry cations chlorides cobalt copper crystals electrostatic interactions hydrogen bonding iron ligands mass spectrometry metal ions nickel nuclear magnetic resonance spectroscopy titration X-ray diffraction zinc |
title | Coordination Chemistry of a Molecular Pentafoil Knot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20Chemistry%20of%20a%20Molecular%20Pentafoil%20Knot&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Liang&rft.date=2019-03-06&rft.volume=141&rft.issue=9&rft.spage=3952&rft.epage=3958&rft.pages=3952-3958&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b12548&rft_dat=%3Cproquest_pubme%3E2237543096%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184526308&rft_id=info:pmid/30742430&rfr_iscdi=true |