Coordination Chemistry of a Molecular Pentafoil Knot

The binding of Zn­(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co­(II), Ni­(II), and Cu­(II) pentanuclear knots in good yields (≥85%). Ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-03, Vol.141 (9), p.3952-3958
Hauptverfasser: Zhang, Liang, Stephens, Alexander J, Lemonnier, Jean-François, Pirvu, Lucian, Vitorica-Yrezabal, Iñigo J, Robinson, Christopher J, Leigh, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3958
container_issue 9
container_start_page 3952
container_title Journal of the American Chemical Society
container_volume 141
creator Zhang, Liang
Stephens, Alexander J
Lemonnier, Jean-François
Pirvu, Lucian
Vitorica-Yrezabal, Iñigo J
Robinson, Christopher J
Leigh, David A
description The binding of Zn­(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co­(II), Ni­(II), and Cu­(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe­(II) (and, in some cases, Ni­(II) and Zn­(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.
doi_str_mv 10.1021/jacs.8b12548
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237543096</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRbK3ePEuOHozOPrN7EST4wooe9Lxsk12bkmbrbiL0vzeltSoInoZhvvnN40PoGMM5BoIvZqaI53KCCWdyBw0xJ5ByTMQuGgIASTMp6AAdxDjrU0Yk3kcDChkjjMIQsdz7UFaNaSvfJPnUzqvYhmXiXWKSR1_boqtNSJ5t0xrnqzp5aHx7iPacqaM92sQRer25fsnv0vHT7X1-NU4N49CmCgtmQInCqZKBo8YoasBYoERgkVlbKsZwYakAXGLilCqzwslSUakcl5aO0OWau-gmc1sW_RLB1HoRqrkJS-1NpX9Xmmqq3_yHFoxKLmUPON0Agn_vbGx1f15h69o01ndRE0Iz3v9Bif-lWDJOBIUV9WwtLYKPMVi33QiDXnmiV57ojSe9_OTnFVvxlwnfo1ddM9-Fpn_q36xPQiqUeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184526308</pqid></control><display><type>article</type><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><source>American Chemical Society Journals</source><creator>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</creator><creatorcontrib>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</creatorcontrib><description>The binding of Zn­(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co­(II), Ni­(II), and Cu­(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe­(II) (and, in some cases, Ni­(II) and Zn­(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b12548</identifier><identifier>PMID: 30742430</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetonitrile ; binding capacity ; calorimetry ; cations ; chlorides ; cobalt ; copper ; crystals ; electrostatic interactions ; hydrogen bonding ; iron ; ligands ; mass spectrometry ; metal ions ; nickel ; nuclear magnetic resonance spectroscopy ; titration ; X-ray diffraction ; zinc</subject><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (9), p.3952-3958</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</citedby><cites>FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</cites><orcidid>0000-0001-8605-8681 ; 0000-0001-6146-566X ; 0000-0002-1202-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b12548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b12548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30742430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Stephens, Alexander J</creatorcontrib><creatorcontrib>Lemonnier, Jean-François</creatorcontrib><creatorcontrib>Pirvu, Lucian</creatorcontrib><creatorcontrib>Vitorica-Yrezabal, Iñigo J</creatorcontrib><creatorcontrib>Robinson, Christopher J</creatorcontrib><creatorcontrib>Leigh, David A</creatorcontrib><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The binding of Zn­(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co­(II), Ni­(II), and Cu­(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe­(II) (and, in some cases, Ni­(II) and Zn­(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</description><subject>acetonitrile</subject><subject>binding capacity</subject><subject>calorimetry</subject><subject>cations</subject><subject>chlorides</subject><subject>cobalt</subject><subject>copper</subject><subject>crystals</subject><subject>electrostatic interactions</subject><subject>hydrogen bonding</subject><subject>iron</subject><subject>ligands</subject><subject>mass spectrometry</subject><subject>metal ions</subject><subject>nickel</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>titration</subject><subject>X-ray diffraction</subject><subject>zinc</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRbK3ePEuOHozOPrN7EST4wooe9Lxsk12bkmbrbiL0vzeltSoInoZhvvnN40PoGMM5BoIvZqaI53KCCWdyBw0xJ5ByTMQuGgIASTMp6AAdxDjrU0Yk3kcDChkjjMIQsdz7UFaNaSvfJPnUzqvYhmXiXWKSR1_boqtNSJ5t0xrnqzp5aHx7iPacqaM92sQRer25fsnv0vHT7X1-NU4N49CmCgtmQInCqZKBo8YoasBYoERgkVlbKsZwYakAXGLilCqzwslSUakcl5aO0OWau-gmc1sW_RLB1HoRqrkJS-1NpX9Xmmqq3_yHFoxKLmUPON0Agn_vbGx1f15h69o01ndRE0Iz3v9Bif-lWDJOBIUV9WwtLYKPMVi33QiDXnmiV57ojSe9_OTnFVvxlwnfo1ddM9-Fpn_q36xPQiqUeA</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Zhang, Liang</creator><creator>Stephens, Alexander J</creator><creator>Lemonnier, Jean-François</creator><creator>Pirvu, Lucian</creator><creator>Vitorica-Yrezabal, Iñigo J</creator><creator>Robinson, Christopher J</creator><creator>Leigh, David A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8605-8681</orcidid><orcidid>https://orcid.org/0000-0001-6146-566X</orcidid><orcidid>https://orcid.org/0000-0002-1202-4507</orcidid></search><sort><creationdate>20190306</creationdate><title>Coordination Chemistry of a Molecular Pentafoil Knot</title><author>Zhang, Liang ; Stephens, Alexander J ; Lemonnier, Jean-François ; Pirvu, Lucian ; Vitorica-Yrezabal, Iñigo J ; Robinson, Christopher J ; Leigh, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-9164a096cf9d40f3aa93a0ae0326167eed9441ce3601d12f99d7cf8d9389f58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acetonitrile</topic><topic>binding capacity</topic><topic>calorimetry</topic><topic>cations</topic><topic>chlorides</topic><topic>cobalt</topic><topic>copper</topic><topic>crystals</topic><topic>electrostatic interactions</topic><topic>hydrogen bonding</topic><topic>iron</topic><topic>ligands</topic><topic>mass spectrometry</topic><topic>metal ions</topic><topic>nickel</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>titration</topic><topic>X-ray diffraction</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Stephens, Alexander J</creatorcontrib><creatorcontrib>Lemonnier, Jean-François</creatorcontrib><creatorcontrib>Pirvu, Lucian</creatorcontrib><creatorcontrib>Vitorica-Yrezabal, Iñigo J</creatorcontrib><creatorcontrib>Robinson, Christopher J</creatorcontrib><creatorcontrib>Leigh, David A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liang</au><au>Stephens, Alexander J</au><au>Lemonnier, Jean-François</au><au>Pirvu, Lucian</au><au>Vitorica-Yrezabal, Iñigo J</au><au>Robinson, Christopher J</au><au>Leigh, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination Chemistry of a Molecular Pentafoil Knot</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-06</date><risdate>2019</risdate><volume>141</volume><issue>9</issue><spage>3952</spage><epage>3958</epage><pages>3952-3958</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The binding of Zn­(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding “first-sphere” coordination Co­(II), Ni­(II), and Cu­(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe­(II) (and, in some cases, Ni­(II) and Zn­(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit “second-sphere” coordination of a single chloride ion within the central cavity of the knot through CH···Cl– hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion–knotted-ligand second-sphere coordination complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30742430</pmid><doi>10.1021/jacs.8b12548</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8605-8681</orcidid><orcidid>https://orcid.org/0000-0001-6146-566X</orcidid><orcidid>https://orcid.org/0000-0002-1202-4507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-03, Vol.141 (9), p.3952-3958
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438588
source American Chemical Society Journals
subjects acetonitrile
binding capacity
calorimetry
cations
chlorides
cobalt
copper
crystals
electrostatic interactions
hydrogen bonding
iron
ligands
mass spectrometry
metal ions
nickel
nuclear magnetic resonance spectroscopy
titration
X-ray diffraction
zinc
title Coordination Chemistry of a Molecular Pentafoil Knot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20Chemistry%20of%20a%20Molecular%20Pentafoil%20Knot&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Liang&rft.date=2019-03-06&rft.volume=141&rft.issue=9&rft.spage=3952&rft.epage=3958&rft.pages=3952-3958&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b12548&rft_dat=%3Cproquest_pubme%3E2237543096%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184526308&rft_id=info:pmid/30742430&rfr_iscdi=true