Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors
Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2019-04, Vol.13 (4), p.251-256 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 4 |
container_start_page | 251 |
container_title | Nature photonics |
container_volume | 13 |
creator | Makey, Ghaith Yavuz, Özgün Kesim, Denizhan K. Turnalı, Ahmet Elahi, Parviz Ilday, Serim Tokel, Onur Ilday, F. Ömer |
description | Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms
1
–
7
, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video
8
,
9
. Despite extensive efforts aimed at 3D holographic projection
10
–
17
, however, the available methods remain limited to creating images on a few planes
10
–
12
, over a narrow depth of field
13
,
14
or with low resolution
15
–
17
. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk
9
,
18
. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art
12
,
17
for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.
Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes. |
doi_str_mv | 10.1038/s41566-019-0393-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201717366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoNYbK3-AG8k4I03a_P9cSPY4hcUvNHrkJNNdtPuJsdkt3D-vTmeetRCITAh88ybmXkBeIXRO4youqgMcyE6hHWHqKadfALOsGS6Y0rTp8e74qfgea03CHGqCXkGTinS7XB5BsJl8fY2pgG6kmtd7HQLpzjHpcIlw36X7BwdHPOUh2K34w6udQ_nsox5yMlOcdnBHOAYh7Hr4-xTjftnWGzq8wzvvFtyqS_ASbBT9S_v4zn48enj96sv3fW3z1-vPlx3jkm0dErIQCjRIfSeECe0C8GxQBnnljm1scoS1ZPArEAbHJAQnjMlN1I0SihHz8H7g-523cy-dz4txU5mW-Jsy85kG83_mRRHM-Q7IxgVErMm8PZeoOSfq6-LmWN1fpps8nmthhCEJZZUiIa-eYDe5LW02RuFNW-b5po3Ch-o3_stPhybwcjsXTQHF01z0exdNLLVvP53imPFH9saQA5Abak0-PL368dVfwFsk6sp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195922595</pqid></control><display><type>article</type><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</creator><creatorcontrib>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</creatorcontrib><description>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms
1
–
7
, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video
8
,
9
. Despite extensive efforts aimed at 3D holographic projection
10
–
17
, however, the available methods remain limited to creating images on a few planes
10
–
12
, over a narrow depth of field
13
,
14
or with low resolution
15
–
17
. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk
9
,
18
. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art
12
,
17
for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.
Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0393-7</identifier><identifier>PMID: 30930957</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/146 ; 639/624/1107/328 ; 639/624/1107/510 ; 639/624/400 ; Applied and Technical Physics ; Crosstalk ; Fresnel diffraction ; Holograms ; Holography ; Letter ; Orthogonality ; Physics ; Physics and Astronomy ; Planes ; Projection ; Quantum Physics ; Spatial light modulators ; Wave fronts</subject><ispartof>Nature photonics, 2019-04, Vol.13 (4), p.251-256</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</citedby><cites>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</cites><orcidid>0000-0002-2511-8852 ; 0000-0002-6755-4425 ; 0000-0003-1586-4349 ; 0000-0003-3545-8436 ; 0000-0002-6867-0882 ; 0000-0002-9057-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30930957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makey, Ghaith</creatorcontrib><creatorcontrib>Yavuz, Özgün</creatorcontrib><creatorcontrib>Kesim, Denizhan K.</creatorcontrib><creatorcontrib>Turnalı, Ahmet</creatorcontrib><creatorcontrib>Elahi, Parviz</creatorcontrib><creatorcontrib>Ilday, Serim</creatorcontrib><creatorcontrib>Tokel, Onur</creatorcontrib><creatorcontrib>Ilday, F. Ömer</creatorcontrib><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><addtitle>Nat Photonics</addtitle><description>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms
1
–
7
, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video
8
,
9
. Despite extensive efforts aimed at 3D holographic projection
10
–
17
, however, the available methods remain limited to creating images on a few planes
10
–
12
, over a narrow depth of field
13
,
14
or with low resolution
15
–
17
. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk
9
,
18
. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art
12
,
17
for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.
Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</description><subject>639/624/1075/146</subject><subject>639/624/1107/328</subject><subject>639/624/1107/510</subject><subject>639/624/400</subject><subject>Applied and Technical Physics</subject><subject>Crosstalk</subject><subject>Fresnel diffraction</subject><subject>Holograms</subject><subject>Holography</subject><subject>Letter</subject><subject>Orthogonality</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planes</subject><subject>Projection</subject><subject>Quantum Physics</subject><subject>Spatial light modulators</subject><subject>Wave fronts</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1rFTEQhoNYbK3-AG8k4I03a_P9cSPY4hcUvNHrkJNNdtPuJsdkt3D-vTmeetRCITAh88ybmXkBeIXRO4youqgMcyE6hHWHqKadfALOsGS6Y0rTp8e74qfgea03CHGqCXkGTinS7XB5BsJl8fY2pgG6kmtd7HQLpzjHpcIlw36X7BwdHPOUh2K34w6udQ_nsox5yMlOcdnBHOAYh7Hr4-xTjftnWGzq8wzvvFtyqS_ASbBT9S_v4zn48enj96sv3fW3z1-vPlx3jkm0dErIQCjRIfSeECe0C8GxQBnnljm1scoS1ZPArEAbHJAQnjMlN1I0SihHz8H7g-523cy-dz4txU5mW-Jsy85kG83_mRRHM-Q7IxgVErMm8PZeoOSfq6-LmWN1fpps8nmthhCEJZZUiIa-eYDe5LW02RuFNW-b5po3Ch-o3_stPhybwcjsXTQHF01z0exdNLLVvP53imPFH9saQA5Abak0-PL368dVfwFsk6sp</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Makey, Ghaith</creator><creator>Yavuz, Özgün</creator><creator>Kesim, Denizhan K.</creator><creator>Turnalı, Ahmet</creator><creator>Elahi, Parviz</creator><creator>Ilday, Serim</creator><creator>Tokel, Onur</creator><creator>Ilday, F. Ömer</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2511-8852</orcidid><orcidid>https://orcid.org/0000-0002-6755-4425</orcidid><orcidid>https://orcid.org/0000-0003-1586-4349</orcidid><orcidid>https://orcid.org/0000-0003-3545-8436</orcidid><orcidid>https://orcid.org/0000-0002-6867-0882</orcidid><orcidid>https://orcid.org/0000-0002-9057-5371</orcidid></search><sort><creationdate>20190401</creationdate><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><author>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/146</topic><topic>639/624/1107/328</topic><topic>639/624/1107/510</topic><topic>639/624/400</topic><topic>Applied and Technical Physics</topic><topic>Crosstalk</topic><topic>Fresnel diffraction</topic><topic>Holograms</topic><topic>Holography</topic><topic>Letter</topic><topic>Orthogonality</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planes</topic><topic>Projection</topic><topic>Quantum Physics</topic><topic>Spatial light modulators</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makey, Ghaith</creatorcontrib><creatorcontrib>Yavuz, Özgün</creatorcontrib><creatorcontrib>Kesim, Denizhan K.</creatorcontrib><creatorcontrib>Turnalı, Ahmet</creatorcontrib><creatorcontrib>Elahi, Parviz</creatorcontrib><creatorcontrib>Ilday, Serim</creatorcontrib><creatorcontrib>Tokel, Onur</creatorcontrib><creatorcontrib>Ilday, F. Ömer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makey, Ghaith</au><au>Yavuz, Özgün</au><au>Kesim, Denizhan K.</au><au>Turnalı, Ahmet</au><au>Elahi, Parviz</au><au>Ilday, Serim</au><au>Tokel, Onur</au><au>Ilday, F. Ömer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><addtitle>Nat Photonics</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>251</spage><epage>256</epage><pages>251-256</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms
1
–
7
, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video
8
,
9
. Despite extensive efforts aimed at 3D holographic projection
10
–
17
, however, the available methods remain limited to creating images on a few planes
10
–
12
, over a narrow depth of field
13
,
14
or with low resolution
15
–
17
. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk
9
,
18
. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art
12
,
17
for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.
Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30930957</pmid><doi>10.1038/s41566-019-0393-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2511-8852</orcidid><orcidid>https://orcid.org/0000-0002-6755-4425</orcidid><orcidid>https://orcid.org/0000-0003-1586-4349</orcidid><orcidid>https://orcid.org/0000-0003-3545-8436</orcidid><orcidid>https://orcid.org/0000-0002-6867-0882</orcidid><orcidid>https://orcid.org/0000-0002-9057-5371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2019-04, Vol.13 (4), p.251-256 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436714 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/1075/146 639/624/1107/328 639/624/1107/510 639/624/400 Applied and Technical Physics Crosstalk Fresnel diffraction Holograms Holography Letter Orthogonality Physics Physics and Astronomy Planes Projection Quantum Physics Spatial light modulators Wave fronts |
title | Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20crosstalk%20limits%20to%20dynamic%20holography%20using%20orthogonality%20of%20high-dimensional%20random%20vectors&rft.jtitle=Nature%20photonics&rft.au=Makey,%20Ghaith&rft.date=2019-04-01&rft.volume=13&rft.issue=4&rft.spage=251&rft.epage=256&rft.pages=251-256&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0393-7&rft_dat=%3Cproquest_pubme%3E2201717366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195922595&rft_id=info:pmid/30930957&rfr_iscdi=true |