Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors

Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2019-04, Vol.13 (4), p.251-256
Hauptverfasser: Makey, Ghaith, Yavuz, Özgün, Kesim, Denizhan K., Turnalı, Ahmet, Elahi, Parviz, Ilday, Serim, Tokel, Onur, Ilday, F. Ömer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 4
container_start_page 251
container_title Nature photonics
container_volume 13
creator Makey, Ghaith
Yavuz, Özgün
Kesim, Denizhan K.
Turnalı, Ahmet
Elahi, Parviz
Ilday, Serim
Tokel, Onur
Ilday, F. Ömer
description Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video 8 , 9 . Despite extensive efforts aimed at 3D holographic projection 10 – 17 , however, the available methods remain limited to creating images on a few planes 10 – 12 , over a narrow depth of field 13 , 14 or with low resolution 15 – 17 . Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk 9 , 18 . The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art 12 , 17 for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media. Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.
doi_str_mv 10.1038/s41566-019-0393-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201717366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoNYbK3-AG8k4I03a_P9cSPY4hcUvNHrkJNNdtPuJsdkt3D-vTmeetRCITAh88ybmXkBeIXRO4youqgMcyE6hHWHqKadfALOsGS6Y0rTp8e74qfgea03CHGqCXkGTinS7XB5BsJl8fY2pgG6kmtd7HQLpzjHpcIlw36X7BwdHPOUh2K34w6udQ_nsox5yMlOcdnBHOAYh7Hr4-xTjftnWGzq8wzvvFtyqS_ASbBT9S_v4zn48enj96sv3fW3z1-vPlx3jkm0dErIQCjRIfSeECe0C8GxQBnnljm1scoS1ZPArEAbHJAQnjMlN1I0SihHz8H7g-523cy-dz4txU5mW-Jsy85kG83_mRRHM-Q7IxgVErMm8PZeoOSfq6-LmWN1fpps8nmthhCEJZZUiIa-eYDe5LW02RuFNW-b5po3Ch-o3_stPhybwcjsXTQHF01z0exdNLLVvP53imPFH9saQA5Abak0-PL368dVfwFsk6sp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195922595</pqid></control><display><type>article</type><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</creator><creatorcontrib>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</creatorcontrib><description>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video 8 , 9 . Despite extensive efforts aimed at 3D holographic projection 10 – 17 , however, the available methods remain limited to creating images on a few planes 10 – 12 , over a narrow depth of field 13 , 14 or with low resolution 15 – 17 . Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk 9 , 18 . The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art 12 , 17 for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media. Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0393-7</identifier><identifier>PMID: 30930957</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/146 ; 639/624/1107/328 ; 639/624/1107/510 ; 639/624/400 ; Applied and Technical Physics ; Crosstalk ; Fresnel diffraction ; Holograms ; Holography ; Letter ; Orthogonality ; Physics ; Physics and Astronomy ; Planes ; Projection ; Quantum Physics ; Spatial light modulators ; Wave fronts</subject><ispartof>Nature photonics, 2019-04, Vol.13 (4), p.251-256</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</citedby><cites>FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</cites><orcidid>0000-0002-2511-8852 ; 0000-0002-6755-4425 ; 0000-0003-1586-4349 ; 0000-0003-3545-8436 ; 0000-0002-6867-0882 ; 0000-0002-9057-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30930957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makey, Ghaith</creatorcontrib><creatorcontrib>Yavuz, Özgün</creatorcontrib><creatorcontrib>Kesim, Denizhan K.</creatorcontrib><creatorcontrib>Turnalı, Ahmet</creatorcontrib><creatorcontrib>Elahi, Parviz</creatorcontrib><creatorcontrib>Ilday, Serim</creatorcontrib><creatorcontrib>Tokel, Onur</creatorcontrib><creatorcontrib>Ilday, F. Ömer</creatorcontrib><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><addtitle>Nat Photonics</addtitle><description>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video 8 , 9 . Despite extensive efforts aimed at 3D holographic projection 10 – 17 , however, the available methods remain limited to creating images on a few planes 10 – 12 , over a narrow depth of field 13 , 14 or with low resolution 15 – 17 . Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk 9 , 18 . The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art 12 , 17 for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media. Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</description><subject>639/624/1075/146</subject><subject>639/624/1107/328</subject><subject>639/624/1107/510</subject><subject>639/624/400</subject><subject>Applied and Technical Physics</subject><subject>Crosstalk</subject><subject>Fresnel diffraction</subject><subject>Holograms</subject><subject>Holography</subject><subject>Letter</subject><subject>Orthogonality</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planes</subject><subject>Projection</subject><subject>Quantum Physics</subject><subject>Spatial light modulators</subject><subject>Wave fronts</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1rFTEQhoNYbK3-AG8k4I03a_P9cSPY4hcUvNHrkJNNdtPuJsdkt3D-vTmeetRCITAh88ybmXkBeIXRO4youqgMcyE6hHWHqKadfALOsGS6Y0rTp8e74qfgea03CHGqCXkGTinS7XB5BsJl8fY2pgG6kmtd7HQLpzjHpcIlw36X7BwdHPOUh2K34w6udQ_nsox5yMlOcdnBHOAYh7Hr4-xTjftnWGzq8wzvvFtyqS_ASbBT9S_v4zn48enj96sv3fW3z1-vPlx3jkm0dErIQCjRIfSeECe0C8GxQBnnljm1scoS1ZPArEAbHJAQnjMlN1I0SihHz8H7g-523cy-dz4txU5mW-Jsy85kG83_mRRHM-Q7IxgVErMm8PZeoOSfq6-LmWN1fpps8nmthhCEJZZUiIa-eYDe5LW02RuFNW-b5po3Ch-o3_stPhybwcjsXTQHF01z0exdNLLVvP53imPFH9saQA5Abak0-PL368dVfwFsk6sp</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Makey, Ghaith</creator><creator>Yavuz, Özgün</creator><creator>Kesim, Denizhan K.</creator><creator>Turnalı, Ahmet</creator><creator>Elahi, Parviz</creator><creator>Ilday, Serim</creator><creator>Tokel, Onur</creator><creator>Ilday, F. Ömer</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2511-8852</orcidid><orcidid>https://orcid.org/0000-0002-6755-4425</orcidid><orcidid>https://orcid.org/0000-0003-1586-4349</orcidid><orcidid>https://orcid.org/0000-0003-3545-8436</orcidid><orcidid>https://orcid.org/0000-0002-6867-0882</orcidid><orcidid>https://orcid.org/0000-0002-9057-5371</orcidid></search><sort><creationdate>20190401</creationdate><title>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</title><author>Makey, Ghaith ; Yavuz, Özgün ; Kesim, Denizhan K. ; Turnalı, Ahmet ; Elahi, Parviz ; Ilday, Serim ; Tokel, Onur ; Ilday, F. Ömer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-867f2329ffde22c69cffc4f3455a4c8ba8a28d2f4a60b1f066e5487b76c4f68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/146</topic><topic>639/624/1107/328</topic><topic>639/624/1107/510</topic><topic>639/624/400</topic><topic>Applied and Technical Physics</topic><topic>Crosstalk</topic><topic>Fresnel diffraction</topic><topic>Holograms</topic><topic>Holography</topic><topic>Letter</topic><topic>Orthogonality</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planes</topic><topic>Projection</topic><topic>Quantum Physics</topic><topic>Spatial light modulators</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makey, Ghaith</creatorcontrib><creatorcontrib>Yavuz, Özgün</creatorcontrib><creatorcontrib>Kesim, Denizhan K.</creatorcontrib><creatorcontrib>Turnalı, Ahmet</creatorcontrib><creatorcontrib>Elahi, Parviz</creatorcontrib><creatorcontrib>Ilday, Serim</creatorcontrib><creatorcontrib>Tokel, Onur</creatorcontrib><creatorcontrib>Ilday, F. Ömer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makey, Ghaith</au><au>Yavuz, Özgün</au><au>Kesim, Denizhan K.</au><au>Turnalı, Ahmet</au><au>Elahi, Parviz</au><au>Ilday, Serim</au><au>Tokel, Onur</au><au>Ilday, F. Ömer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><addtitle>Nat Photonics</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>251</spage><epage>256</epage><pages>251-256</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms 1 – 7 , which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video 8 , 9 . Despite extensive efforts aimed at 3D holographic projection 10 – 17 , however, the available methods remain limited to creating images on a few planes 10 – 12 , over a narrow depth of field 13 , 14 or with low resolution 15 – 17 . Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk 9 , 18 . The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art 12 , 17 for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media. Pre-shaping image wavefronts with random phase to locally reduce Fresnel diffraction to Fourier holography results in Fresnel holograms that form on-axis with full depth control without any crosstalk. This produces large-volume, high-density, dynamic 3D projections with 1,000 simultaneous image planes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30930957</pmid><doi>10.1038/s41566-019-0393-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2511-8852</orcidid><orcidid>https://orcid.org/0000-0002-6755-4425</orcidid><orcidid>https://orcid.org/0000-0003-1586-4349</orcidid><orcidid>https://orcid.org/0000-0003-3545-8436</orcidid><orcidid>https://orcid.org/0000-0002-6867-0882</orcidid><orcidid>https://orcid.org/0000-0002-9057-5371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2019-04, Vol.13 (4), p.251-256
issn 1749-4885
1749-4893
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436714
source Nature; Alma/SFX Local Collection
subjects 639/624/1075/146
639/624/1107/328
639/624/1107/510
639/624/400
Applied and Technical Physics
Crosstalk
Fresnel diffraction
Holograms
Holography
Letter
Orthogonality
Physics
Physics and Astronomy
Planes
Projection
Quantum Physics
Spatial light modulators
Wave fronts
title Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20crosstalk%20limits%20to%20dynamic%20holography%20using%20orthogonality%20of%20high-dimensional%20random%20vectors&rft.jtitle=Nature%20photonics&rft.au=Makey,%20Ghaith&rft.date=2019-04-01&rft.volume=13&rft.issue=4&rft.spage=251&rft.epage=256&rft.pages=251-256&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0393-7&rft_dat=%3Cproquest_pubme%3E2201717366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195922595&rft_id=info:pmid/30930957&rfr_iscdi=true