Conservation of ethanol fermentation and its regulation in land plants
Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD⁺. Despite its acknowledgement a...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2019-03, Vol.70 (6), p.1815-1827 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 6 |
container_start_page | 1815 |
container_title | Journal of experimental botany |
container_volume | 70 |
creator | Bui, Liem T. Novi, Giacomo Lombardi, Lara Iannuzzi, Cristina Rossi, Jacopo Santaniello, Antonietta Mensuali, Anna Corbineau, Françoise Giuntoli, Beatrice Perata, Pierdomenico Zaffagnini, Mirko Licausi, Francesco |
description | Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD⁺. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future . |
doi_str_mv | 10.1093/jxb/erz052 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26961534</jstor_id><oup_id>10.1093/jxb/erz052</oup_id><sourcerecordid>26961534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-1490ae618365f7115e3d19b16c1c4af0c4088dfe804797c3917e025723d62b13</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj427pVuBBWq9-bZbgQZfMGAG_ch06ZOh04zJu2g_npbqoO60E0CJ1_OfRxCDhEuEFJ2OX-dXlr_DoJukBFyCTHlDDfJCIDSGFKhdshuCHMAECDENtlhkEgERUfkduzqYP3KNKWrI1dEtpmZ2lVRYf3C1s2gmzqPyiZE3j631SCVdVT18rI7m7BPtgpTBXvwee-Rp9ubp_F9PHm8exhfT-JMSNbEyFMwVmLCpCgUorAsx3SKMsOMmwIyDkmSFzYBrlKVsRSVBSoUZbmkU2R75GqwXbbThc2zrkFvKr305cL4N-1MqX--1OVMP7uVlpxJFKozOBsMZr--3V9PdK8BRUo5wKovdvpZzLuX1oZGL8qQ2aob2Lo26B7jCSBT_6OYYr982qPnA5p5F4K3xboNBN3Hqbs49RBnBx9_n3eNfuXXAScD4Nrl30ZHAzcPjfNrksq0Wwvj7APolbEJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191005027</pqid></control><display><type>article</type><title>Conservation of ethanol fermentation and its regulation in land plants</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bui, Liem T. ; Novi, Giacomo ; Lombardi, Lara ; Iannuzzi, Cristina ; Rossi, Jacopo ; Santaniello, Antonietta ; Mensuali, Anna ; Corbineau, Françoise ; Giuntoli, Beatrice ; Perata, Pierdomenico ; Zaffagnini, Mirko ; Licausi, Francesco</creator><creatorcontrib>Bui, Liem T. ; Novi, Giacomo ; Lombardi, Lara ; Iannuzzi, Cristina ; Rossi, Jacopo ; Santaniello, Antonietta ; Mensuali, Anna ; Corbineau, Françoise ; Giuntoli, Beatrice ; Perata, Pierdomenico ; Zaffagnini, Mirko ; Licausi, Francesco</creatorcontrib><description>Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD⁺. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future .</description><identifier>ISSN: 0022-0957</identifier><identifier>ISSN: 1460-2431</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erz052</identifier><identifier>PMID: 30861072</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>acetaldehyde ; alcohol dehydrogenase ; Alcohol Dehydrogenase - metabolism ; anaerobic conditions ; Arabidopsis ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Evolution ; Botanics ; catalytic activity ; Embryophyta - enzymology ; Embryophyta - metabolism ; embryophytes ; energy ; ethanol ; Ethanol - metabolism ; ethanol fermentation ; ethanol production ; evolution ; Fermentation ; hypoxia ; Life Sciences ; mutants ; NAD (coenzyme) ; oxidation ; oxygen ; Photosynthesis and Metabolism ; pyruvate decarboxylase ; Pyruvate Decarboxylase - metabolism ; pyruvic acid ; Research Papers ; transcription (genetics) ; Vegetal Biology</subject><ispartof>Journal of experimental botany, 2019-03, Vol.70 (6), p.1815-1827</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-1490ae618365f7115e3d19b16c1c4af0c4088dfe804797c3917e025723d62b13</citedby><cites>FETCH-LOGICAL-c563t-1490ae618365f7115e3d19b16c1c4af0c4088dfe804797c3917e025723d62b13</cites><orcidid>0000-0001-9444-0610 ; 0000-0003-4769-441X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30861072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02122400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Liem T.</creatorcontrib><creatorcontrib>Novi, Giacomo</creatorcontrib><creatorcontrib>Lombardi, Lara</creatorcontrib><creatorcontrib>Iannuzzi, Cristina</creatorcontrib><creatorcontrib>Rossi, Jacopo</creatorcontrib><creatorcontrib>Santaniello, Antonietta</creatorcontrib><creatorcontrib>Mensuali, Anna</creatorcontrib><creatorcontrib>Corbineau, Françoise</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Zaffagnini, Mirko</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><title>Conservation of ethanol fermentation and its regulation in land plants</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD⁺. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future .</description><subject>acetaldehyde</subject><subject>alcohol dehydrogenase</subject><subject>Alcohol Dehydrogenase - metabolism</subject><subject>anaerobic conditions</subject><subject>Arabidopsis</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Evolution</subject><subject>Botanics</subject><subject>catalytic activity</subject><subject>Embryophyta - enzymology</subject><subject>Embryophyta - metabolism</subject><subject>embryophytes</subject><subject>energy</subject><subject>ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol fermentation</subject><subject>ethanol production</subject><subject>evolution</subject><subject>Fermentation</subject><subject>hypoxia</subject><subject>Life Sciences</subject><subject>mutants</subject><subject>NAD (coenzyme)</subject><subject>oxidation</subject><subject>oxygen</subject><subject>Photosynthesis and Metabolism</subject><subject>pyruvate decarboxylase</subject><subject>Pyruvate Decarboxylase - metabolism</subject><subject>pyruvic acid</subject><subject>Research Papers</subject><subject>transcription (genetics)</subject><subject>Vegetal Biology</subject><issn>0022-0957</issn><issn>1460-2431</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj427pVuBBWq9-bZbgQZfMGAG_ch06ZOh04zJu2g_npbqoO60E0CJ1_OfRxCDhEuEFJ2OX-dXlr_DoJukBFyCTHlDDfJCIDSGFKhdshuCHMAECDENtlhkEgERUfkduzqYP3KNKWrI1dEtpmZ2lVRYf3C1s2gmzqPyiZE3j631SCVdVT18rI7m7BPtgpTBXvwee-Rp9ubp_F9PHm8exhfT-JMSNbEyFMwVmLCpCgUorAsx3SKMsOMmwIyDkmSFzYBrlKVsRSVBSoUZbmkU2R75GqwXbbThc2zrkFvKr305cL4N-1MqX--1OVMP7uVlpxJFKozOBsMZr--3V9PdK8BRUo5wKovdvpZzLuX1oZGL8qQ2aob2Lo26B7jCSBT_6OYYr982qPnA5p5F4K3xboNBN3Hqbs49RBnBx9_n3eNfuXXAScD4Nrl30ZHAzcPjfNrksq0Wwvj7APolbEJ</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Bui, Liem T.</creator><creator>Novi, Giacomo</creator><creator>Lombardi, Lara</creator><creator>Iannuzzi, Cristina</creator><creator>Rossi, Jacopo</creator><creator>Santaniello, Antonietta</creator><creator>Mensuali, Anna</creator><creator>Corbineau, Françoise</creator><creator>Giuntoli, Beatrice</creator><creator>Perata, Pierdomenico</creator><creator>Zaffagnini, Mirko</creator><creator>Licausi, Francesco</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid></search><sort><creationdate>20190327</creationdate><title>Conservation of ethanol fermentation and its regulation in land plants</title><author>Bui, Liem T. ; Novi, Giacomo ; Lombardi, Lara ; Iannuzzi, Cristina ; Rossi, Jacopo ; Santaniello, Antonietta ; Mensuali, Anna ; Corbineau, Françoise ; Giuntoli, Beatrice ; Perata, Pierdomenico ; Zaffagnini, Mirko ; Licausi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-1490ae618365f7115e3d19b16c1c4af0c4088dfe804797c3917e025723d62b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acetaldehyde</topic><topic>alcohol dehydrogenase</topic><topic>Alcohol Dehydrogenase - metabolism</topic><topic>anaerobic conditions</topic><topic>Arabidopsis</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Evolution</topic><topic>Botanics</topic><topic>catalytic activity</topic><topic>Embryophyta - enzymology</topic><topic>Embryophyta - metabolism</topic><topic>embryophytes</topic><topic>energy</topic><topic>ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol fermentation</topic><topic>ethanol production</topic><topic>evolution</topic><topic>Fermentation</topic><topic>hypoxia</topic><topic>Life Sciences</topic><topic>mutants</topic><topic>NAD (coenzyme)</topic><topic>oxidation</topic><topic>oxygen</topic><topic>Photosynthesis and Metabolism</topic><topic>pyruvate decarboxylase</topic><topic>Pyruvate Decarboxylase - metabolism</topic><topic>pyruvic acid</topic><topic>Research Papers</topic><topic>transcription (genetics)</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Liem T.</creatorcontrib><creatorcontrib>Novi, Giacomo</creatorcontrib><creatorcontrib>Lombardi, Lara</creatorcontrib><creatorcontrib>Iannuzzi, Cristina</creatorcontrib><creatorcontrib>Rossi, Jacopo</creatorcontrib><creatorcontrib>Santaniello, Antonietta</creatorcontrib><creatorcontrib>Mensuali, Anna</creatorcontrib><creatorcontrib>Corbineau, Françoise</creatorcontrib><creatorcontrib>Giuntoli, Beatrice</creatorcontrib><creatorcontrib>Perata, Pierdomenico</creatorcontrib><creatorcontrib>Zaffagnini, Mirko</creatorcontrib><creatorcontrib>Licausi, Francesco</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Liem T.</au><au>Novi, Giacomo</au><au>Lombardi, Lara</au><au>Iannuzzi, Cristina</au><au>Rossi, Jacopo</au><au>Santaniello, Antonietta</au><au>Mensuali, Anna</au><au>Corbineau, Françoise</au><au>Giuntoli, Beatrice</au><au>Perata, Pierdomenico</au><au>Zaffagnini, Mirko</au><au>Licausi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation of ethanol fermentation and its regulation in land plants</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>70</volume><issue>6</issue><spage>1815</spage><epage>1827</epage><pages>1815-1827</pages><issn>0022-0957</issn><issn>1460-2431</issn><eissn>1460-2431</eissn><abstract>Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD⁺. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future .</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>30861072</pmid><doi>10.1093/jxb/erz052</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9444-0610</orcidid><orcidid>https://orcid.org/0000-0003-4769-441X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2019-03, Vol.70 (6), p.1815-1827 |
issn | 0022-0957 1460-2431 1460-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6436157 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | acetaldehyde alcohol dehydrogenase Alcohol Dehydrogenase - metabolism anaerobic conditions Arabidopsis Biochemistry Biochemistry, Molecular Biology Biological Evolution Botanics catalytic activity Embryophyta - enzymology Embryophyta - metabolism embryophytes energy ethanol Ethanol - metabolism ethanol fermentation ethanol production evolution Fermentation hypoxia Life Sciences mutants NAD (coenzyme) oxidation oxygen Photosynthesis and Metabolism pyruvate decarboxylase Pyruvate Decarboxylase - metabolism pyruvic acid Research Papers transcription (genetics) Vegetal Biology |
title | Conservation of ethanol fermentation and its regulation in land plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20of%20ethanol%20fermentation%20and%20its%20regulation%20in%20land%20plants&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Bui,%20Liem%20T.&rft.date=2019-03-27&rft.volume=70&rft.issue=6&rft.spage=1815&rft.epage=1827&rft.pages=1815-1827&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erz052&rft_dat=%3Cjstor_pubme%3E26961534%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191005027&rft_id=info:pmid/30861072&rft_jstor_id=26961534&rft_oup_id=10.1093/jxb/erz052&rfr_iscdi=true |