An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology

Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the FBN1 gene. Although many peripheral tissues are affected, aortic complications, such as dilation, dissection and rupture, are the leading causes of MFS‐related mortality. Aberrant TGF‐beta signalling plays a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2019-04, Vol.23 (4), p.2526-2535
Hauptverfasser: Bhushan, Raghu, Altinbas, Lukas, Jäger, Marten, Zaradzki, Marcin, Lehmann, Daniel, Timmermann, Bernd, Clayton, Nicholas P., Zhu, Yunxiang, Kallenbach, Klaus, Kararigas, Georgios, Robinson, Peter N.
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2535
container_issue 4
container_start_page 2526
container_title Journal of cellular and molecular medicine
container_volume 23
creator Bhushan, Raghu
Altinbas, Lukas
Jäger, Marten
Zaradzki, Marcin
Lehmann, Daniel
Timmermann, Bernd
Clayton, Nicholas P.
Zhu, Yunxiang
Kallenbach, Klaus
Kararigas, Georgios
Robinson, Peter N.
description Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the FBN1 gene. Although many peripheral tissues are affected, aortic complications, such as dilation, dissection and rupture, are the leading causes of MFS‐related mortality. Aberrant TGF‐beta signalling plays a major role in the pathophysiology of MFS. However, the contributing mechanisms are still poorly understood. Here, we aimed at identifying novel aorta‐specific pathways involved in the pathophysiology of MFS. For this purpose, we employed the Fbn1 under‐expressing mgR/mgR mouse model of MFS. We performed RNA‐sequencing of aortic tissues of 9‐week‐old mgR/mgR mice compared with wild‐type (WT) mice. With a false discovery rate
doi_str_mv 10.1111/jcmm.14137
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179435806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-53883b0da922addcb6e051cc07b238a12477d33469d1d817076be2774deca8db3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EoqVw4QFQJC6o0hb_S2xfkKoVBaquuMDZcuzZjVeJHezsotx4BJ6RJ8FltxVwqC-2Zj5_mtEPoZcEX5By3m7tMFwQTph4hE5JLemCK8YfH99EMnmCnuW8xZg1hKmn6IThRghK2SnqLkPlwwSbZCa_hyrPeYIhV2YcUzS2q7yDMPm1h1yFuIe-siY478xUCj5UK5PWJpRvwaU4wK8fPxP0pemq0UxdHLs5-9jHzfwcPVmbPsOL432Gvl69_7L8uLj5_OHT8vJmYbloxKJmUrIWO6MoNc7ZtgFcE2uxaCmThlAuhGOMN8oRJ4nAommBCsEdWCNdy87Qu4N33LUDOFumT6bXY_KDSbOOxut_O8F3ehP3uuGMCY6L4M1RkOK3HeRJDz5b6HsTIO6ypkQozmqJm4K-_g_dxl0KZT1Nea2wEkzRBymiBKZYSV6o8wNlU8w5wfp-ZIL1bcz6Nmb9J-YCv_p7yXv0LtcCkAPw3fcwP6DS18vV6iD9DbBqtV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197020984</pqid></control><display><type>article</type><title>An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bhushan, Raghu ; Altinbas, Lukas ; Jäger, Marten ; Zaradzki, Marcin ; Lehmann, Daniel ; Timmermann, Bernd ; Clayton, Nicholas P. ; Zhu, Yunxiang ; Kallenbach, Klaus ; Kararigas, Georgios ; Robinson, Peter N.</creator><creatorcontrib>Bhushan, Raghu ; Altinbas, Lukas ; Jäger, Marten ; Zaradzki, Marcin ; Lehmann, Daniel ; Timmermann, Bernd ; Clayton, Nicholas P. ; Zhu, Yunxiang ; Kallenbach, Klaus ; Kararigas, Georgios ; Robinson, Peter N.</creatorcontrib><description>Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the FBN1 gene. Although many peripheral tissues are affected, aortic complications, such as dilation, dissection and rupture, are the leading causes of MFS‐related mortality. Aberrant TGF‐beta signalling plays a major role in the pathophysiology of MFS. However, the contributing mechanisms are still poorly understood. Here, we aimed at identifying novel aorta‐specific pathways involved in the pathophysiology of MFS. For this purpose, we employed the Fbn1 under‐expressing mgR/mgR mouse model of MFS. We performed RNA‐sequencing of aortic tissues of 9‐week‐old mgR/mgR mice compared with wild‐type (WT) mice. With a false discovery rate &lt;5%, our analysis revealed 248 genes to be differentially regulated including 20 genes previously unrelated with MFS‐related pathology. Among these, we identified Igfbp2, Ccl8, Spp1, Mylk2, Mfap4, Dsp and H19. We confirmed the expression of regulated genes by quantitative real‐time PCR. Pathway classification revealed transcript signatures involved in chemokine signalling, cardiac muscle contraction, dilated and hypertrophic cardiomyopathy. Furthermore, our immunoblot analysis of aortic tissues revealed altered regulation of pSmad2 signalling, Perk1/2, Igfbp2, Mfap4, Ccl8 and Mylk2 protein levels in mgR/mgR vs WT mice. Together, our integrative systems approach identified several novel factors associated with MFS‐aortic‐specific pathophysiology that might offer potential novel therapeutic targets for MFS.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14137</identifier><identifier>PMID: 30677223</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aneurysms ; Animals ; Antibodies ; Aorta ; Aorta, Thoracic - metabolism ; Aorta, Thoracic - physiopathology ; Aortic dissection ; Autosomal dominant inheritance ; Cardiac muscle ; Cardiomyopathy ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Chemokine CCL8 - genetics ; Chemokine CCL8 - metabolism ; Chemokine signalling ; Chemokines ; Complications ; Coronary vessels ; Datasets ; Desmoplakins - genetics ; Desmoplakins - metabolism ; Disease Models, Animal ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Eutrophication ; Extracellular matrix ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Fibrillin ; Fibrillin-1 - deficiency ; Fibrillin-1 - genetics ; Gene Expression Regulation ; Gene Ontology ; Genes ; Genetic disorders ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Hereditary diseases ; Humans ; Igfbp2 signalling ; Insulin-Like Growth Factor Binding Protein 2 - genetics ; Insulin-Like Growth Factor Binding Protein 2 - metabolism ; Insulin-like growth factor-binding protein 2 ; Kinases ; Marfan syndrome ; Marfan Syndrome - genetics ; Marfan Syndrome - metabolism ; Marfan Syndrome - physiopathology ; Mfap4 ; mgR/mgR ; Mice ; Mice, Transgenic ; Molecular Sequence Annotation ; Muscle contraction ; Muscles ; Muscular function ; Myosin-Light-Chain Kinase - genetics ; Myosin-Light-Chain Kinase - metabolism ; Original ; Osteopontin - genetics ; Osteopontin - metabolism ; Pathophysiology ; Proteins ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA‐sequencing ; Rodents ; Signal Transduction ; Smad2 Protein - genetics ; Smad2 Protein - metabolism ; Spp1 ; Systems Biology - methods ; TGF‐beta signalling ; Therapeutic applications ; Tissues ; Transcription ; Transcriptomics</subject><ispartof>Journal of cellular and molecular medicine, 2019-04, Vol.23 (4), p.2526-2535</ispartof><rights>2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-53883b0da922addcb6e051cc07b238a12477d33469d1d817076be2774deca8db3</citedby><cites>FETCH-LOGICAL-c4767-53883b0da922addcb6e051cc07b238a12477d33469d1d817076be2774deca8db3</cites><orcidid>0000-0001-6960-6025 ; 0000-0002-8187-0176 ; 0000-0002-0736-9199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433740/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433740/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30677223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhushan, Raghu</creatorcontrib><creatorcontrib>Altinbas, Lukas</creatorcontrib><creatorcontrib>Jäger, Marten</creatorcontrib><creatorcontrib>Zaradzki, Marcin</creatorcontrib><creatorcontrib>Lehmann, Daniel</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Clayton, Nicholas P.</creatorcontrib><creatorcontrib>Zhu, Yunxiang</creatorcontrib><creatorcontrib>Kallenbach, Klaus</creatorcontrib><creatorcontrib>Kararigas, Georgios</creatorcontrib><creatorcontrib>Robinson, Peter N.</creatorcontrib><title>An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the FBN1 gene. Although many peripheral tissues are affected, aortic complications, such as dilation, dissection and rupture, are the leading causes of MFS‐related mortality. Aberrant TGF‐beta signalling plays a major role in the pathophysiology of MFS. However, the contributing mechanisms are still poorly understood. Here, we aimed at identifying novel aorta‐specific pathways involved in the pathophysiology of MFS. For this purpose, we employed the Fbn1 under‐expressing mgR/mgR mouse model of MFS. We performed RNA‐sequencing of aortic tissues of 9‐week‐old mgR/mgR mice compared with wild‐type (WT) mice. With a false discovery rate &lt;5%, our analysis revealed 248 genes to be differentially regulated including 20 genes previously unrelated with MFS‐related pathology. Among these, we identified Igfbp2, Ccl8, Spp1, Mylk2, Mfap4, Dsp and H19. We confirmed the expression of regulated genes by quantitative real‐time PCR. Pathway classification revealed transcript signatures involved in chemokine signalling, cardiac muscle contraction, dilated and hypertrophic cardiomyopathy. Furthermore, our immunoblot analysis of aortic tissues revealed altered regulation of pSmad2 signalling, Perk1/2, Igfbp2, Mfap4, Ccl8 and Mylk2 protein levels in mgR/mgR vs WT mice. Together, our integrative systems approach identified several novel factors associated with MFS‐aortic‐specific pathophysiology that might offer potential novel therapeutic targets for MFS.</description><subject>Aneurysms</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Aorta</subject><subject>Aorta, Thoracic - metabolism</subject><subject>Aorta, Thoracic - physiopathology</subject><subject>Aortic dissection</subject><subject>Autosomal dominant inheritance</subject><subject>Cardiac muscle</subject><subject>Cardiomyopathy</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Chemokine CCL8 - genetics</subject><subject>Chemokine CCL8 - metabolism</subject><subject>Chemokine signalling</subject><subject>Chemokines</subject><subject>Complications</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Desmoplakins - genetics</subject><subject>Desmoplakins - metabolism</subject><subject>Disease Models, Animal</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Eutrophication</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Fibrillin</subject><subject>Fibrillin-1 - deficiency</subject><subject>Fibrillin-1 - genetics</subject><subject>Gene Expression Regulation</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Igfbp2 signalling</subject><subject>Insulin-Like Growth Factor Binding Protein 2 - genetics</subject><subject>Insulin-Like Growth Factor Binding Protein 2 - metabolism</subject><subject>Insulin-like growth factor-binding protein 2</subject><subject>Kinases</subject><subject>Marfan syndrome</subject><subject>Marfan Syndrome - genetics</subject><subject>Marfan Syndrome - metabolism</subject><subject>Marfan Syndrome - physiopathology</subject><subject>Mfap4</subject><subject>mgR/mgR</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular Sequence Annotation</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Myosin-Light-Chain Kinase - genetics</subject><subject>Myosin-Light-Chain Kinase - metabolism</subject><subject>Original</subject><subject>Osteopontin - genetics</subject><subject>Osteopontin - metabolism</subject><subject>Pathophysiology</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA‐sequencing</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Smad2 Protein - genetics</subject><subject>Smad2 Protein - metabolism</subject><subject>Spp1</subject><subject>Systems Biology - methods</subject><subject>TGF‐beta signalling</subject><subject>Therapeutic applications</subject><subject>Tissues</subject><subject>Transcription</subject><subject>Transcriptomics</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQhy0EoqVw4QFQJC6o0hb_S2xfkKoVBaquuMDZcuzZjVeJHezsotx4BJ6RJ8FltxVwqC-2Zj5_mtEPoZcEX5By3m7tMFwQTph4hE5JLemCK8YfH99EMnmCnuW8xZg1hKmn6IThRghK2SnqLkPlwwSbZCa_hyrPeYIhV2YcUzS2q7yDMPm1h1yFuIe-siY478xUCj5UK5PWJpRvwaU4wK8fPxP0pemq0UxdHLs5-9jHzfwcPVmbPsOL432Gvl69_7L8uLj5_OHT8vJmYbloxKJmUrIWO6MoNc7ZtgFcE2uxaCmThlAuhGOMN8oRJ4nAommBCsEdWCNdy87Qu4N33LUDOFumT6bXY_KDSbOOxut_O8F3ehP3uuGMCY6L4M1RkOK3HeRJDz5b6HsTIO6ypkQozmqJm4K-_g_dxl0KZT1Nea2wEkzRBymiBKZYSV6o8wNlU8w5wfp-ZIL1bcz6Nmb9J-YCv_p7yXv0LtcCkAPw3fcwP6DS18vV6iD9DbBqtV8</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Bhushan, Raghu</creator><creator>Altinbas, Lukas</creator><creator>Jäger, Marten</creator><creator>Zaradzki, Marcin</creator><creator>Lehmann, Daniel</creator><creator>Timmermann, Bernd</creator><creator>Clayton, Nicholas P.</creator><creator>Zhu, Yunxiang</creator><creator>Kallenbach, Klaus</creator><creator>Kararigas, Georgios</creator><creator>Robinson, Peter N.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6960-6025</orcidid><orcidid>https://orcid.org/0000-0002-8187-0176</orcidid><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid></search><sort><creationdate>201904</creationdate><title>An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology</title><author>Bhushan, Raghu ; Altinbas, Lukas ; Jäger, Marten ; Zaradzki, Marcin ; Lehmann, Daniel ; Timmermann, Bernd ; Clayton, Nicholas P. ; Zhu, Yunxiang ; Kallenbach, Klaus ; Kararigas, Georgios ; Robinson, Peter N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-53883b0da922addcb6e051cc07b238a12477d33469d1d817076be2774deca8db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aneurysms</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Aorta</topic><topic>Aorta, Thoracic - metabolism</topic><topic>Aorta, Thoracic - physiopathology</topic><topic>Aortic dissection</topic><topic>Autosomal dominant inheritance</topic><topic>Cardiac muscle</topic><topic>Cardiomyopathy</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Chemokine CCL8 - genetics</topic><topic>Chemokine CCL8 - metabolism</topic><topic>Chemokine signalling</topic><topic>Chemokines</topic><topic>Complications</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Desmoplakins - genetics</topic><topic>Desmoplakins - metabolism</topic><topic>Disease Models, Animal</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Eutrophication</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Fibrillin</topic><topic>Fibrillin-1 - deficiency</topic><topic>Fibrillin-1 - genetics</topic><topic>Gene Expression Regulation</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Igfbp2 signalling</topic><topic>Insulin-Like Growth Factor Binding Protein 2 - genetics</topic><topic>Insulin-Like Growth Factor Binding Protein 2 - metabolism</topic><topic>Insulin-like growth factor-binding protein 2</topic><topic>Kinases</topic><topic>Marfan syndrome</topic><topic>Marfan Syndrome - genetics</topic><topic>Marfan Syndrome - metabolism</topic><topic>Marfan Syndrome - physiopathology</topic><topic>Mfap4</topic><topic>mgR/mgR</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular Sequence Annotation</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Myosin-Light-Chain Kinase - genetics</topic><topic>Myosin-Light-Chain Kinase - metabolism</topic><topic>Original</topic><topic>Osteopontin - genetics</topic><topic>Osteopontin - metabolism</topic><topic>Pathophysiology</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA‐sequencing</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Smad2 Protein - genetics</topic><topic>Smad2 Protein - metabolism</topic><topic>Spp1</topic><topic>Systems Biology - methods</topic><topic>TGF‐beta signalling</topic><topic>Therapeutic applications</topic><topic>Tissues</topic><topic>Transcription</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhushan, Raghu</creatorcontrib><creatorcontrib>Altinbas, Lukas</creatorcontrib><creatorcontrib>Jäger, Marten</creatorcontrib><creatorcontrib>Zaradzki, Marcin</creatorcontrib><creatorcontrib>Lehmann, Daniel</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Clayton, Nicholas P.</creatorcontrib><creatorcontrib>Zhu, Yunxiang</creatorcontrib><creatorcontrib>Kallenbach, Klaus</creatorcontrib><creatorcontrib>Kararigas, Georgios</creatorcontrib><creatorcontrib>Robinson, Peter N.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhushan, Raghu</au><au>Altinbas, Lukas</au><au>Jäger, Marten</au><au>Zaradzki, Marcin</au><au>Lehmann, Daniel</au><au>Timmermann, Bernd</au><au>Clayton, Nicholas P.</au><au>Zhu, Yunxiang</au><au>Kallenbach, Klaus</au><au>Kararigas, Georgios</au><au>Robinson, Peter N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-04</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>2526</spage><epage>2535</epage><pages>2526-2535</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the FBN1 gene. Although many peripheral tissues are affected, aortic complications, such as dilation, dissection and rupture, are the leading causes of MFS‐related mortality. Aberrant TGF‐beta signalling plays a major role in the pathophysiology of MFS. However, the contributing mechanisms are still poorly understood. Here, we aimed at identifying novel aorta‐specific pathways involved in the pathophysiology of MFS. For this purpose, we employed the Fbn1 under‐expressing mgR/mgR mouse model of MFS. We performed RNA‐sequencing of aortic tissues of 9‐week‐old mgR/mgR mice compared with wild‐type (WT) mice. With a false discovery rate &lt;5%, our analysis revealed 248 genes to be differentially regulated including 20 genes previously unrelated with MFS‐related pathology. Among these, we identified Igfbp2, Ccl8, Spp1, Mylk2, Mfap4, Dsp and H19. We confirmed the expression of regulated genes by quantitative real‐time PCR. Pathway classification revealed transcript signatures involved in chemokine signalling, cardiac muscle contraction, dilated and hypertrophic cardiomyopathy. Furthermore, our immunoblot analysis of aortic tissues revealed altered regulation of pSmad2 signalling, Perk1/2, Igfbp2, Mfap4, Ccl8 and Mylk2 protein levels in mgR/mgR vs WT mice. Together, our integrative systems approach identified several novel factors associated with MFS‐aortic‐specific pathophysiology that might offer potential novel therapeutic targets for MFS.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30677223</pmid><doi>10.1111/jcmm.14137</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6960-6025</orcidid><orcidid>https://orcid.org/0000-0002-8187-0176</orcidid><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2019-04, Vol.23 (4), p.2526-2535
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433740
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aneurysms
Animals
Antibodies
Aorta
Aorta, Thoracic - metabolism
Aorta, Thoracic - physiopathology
Aortic dissection
Autosomal dominant inheritance
Cardiac muscle
Cardiomyopathy
Carrier Proteins - genetics
Carrier Proteins - metabolism
Chemokine CCL8 - genetics
Chemokine CCL8 - metabolism
Chemokine signalling
Chemokines
Complications
Coronary vessels
Datasets
Desmoplakins - genetics
Desmoplakins - metabolism
Disease Models, Animal
eIF-2 Kinase - genetics
eIF-2 Kinase - metabolism
Eutrophication
Extracellular matrix
Extracellular Matrix Proteins - genetics
Extracellular Matrix Proteins - metabolism
Fibrillin
Fibrillin-1 - deficiency
Fibrillin-1 - genetics
Gene Expression Regulation
Gene Ontology
Genes
Genetic disorders
Glycoproteins - genetics
Glycoproteins - metabolism
Hereditary diseases
Humans
Igfbp2 signalling
Insulin-Like Growth Factor Binding Protein 2 - genetics
Insulin-Like Growth Factor Binding Protein 2 - metabolism
Insulin-like growth factor-binding protein 2
Kinases
Marfan syndrome
Marfan Syndrome - genetics
Marfan Syndrome - metabolism
Marfan Syndrome - physiopathology
Mfap4
mgR/mgR
Mice
Mice, Transgenic
Molecular Sequence Annotation
Muscle contraction
Muscles
Muscular function
Myosin-Light-Chain Kinase - genetics
Myosin-Light-Chain Kinase - metabolism
Original
Osteopontin - genetics
Osteopontin - metabolism
Pathophysiology
Proteins
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA‐sequencing
Rodents
Signal Transduction
Smad2 Protein - genetics
Smad2 Protein - metabolism
Spp1
Systems Biology - methods
TGF‐beta signalling
Therapeutic applications
Tissues
Transcription
Transcriptomics
title An integrative systems approach identifies novel candidates in Marfan syndrome‐related pathophysiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrative%20systems%20approach%20identifies%20novel%20candidates%20in%20Marfan%20syndrome%E2%80%90related%20pathophysiology&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Bhushan,%20Raghu&rft.date=2019-04&rft.volume=23&rft.issue=4&rft.spage=2526&rft.epage=2535&rft.pages=2526-2535&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14137&rft_dat=%3Cproquest_pubme%3E2179435806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197020984&rft_id=info:pmid/30677223&rfr_iscdi=true