Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii

Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-03, Vol.294 (12), p.4304-4314
Hauptverfasser: Kubota-Kawai, Hisako, Burton-Smith, Raymond N., Tokutsu, Ryutaro, Song, Chihong, Akimoto, Seiji, Yokono, Makio, Ueno, Yoshifumi, Kim, Eunchul, Watanabe, Akimasa, Murata, Kazuyoshi, Minagawa, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4314
container_issue 12
container_start_page 4304
container_title The Journal of biological chemistry
container_volume 294
creator Kubota-Kawai, Hisako
Burton-Smith, Raymond N.
Tokutsu, Ryutaro
Song, Chihong
Akimoto, Seiji
Yokono, Makio
Ueno, Yoshifumi
Kim, Eunchul
Watanabe, Akimasa
Murata, Kazuyoshi
Minagawa, Jun
description Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.
doi_str_mv 10.1074/jbc.RA118.006536
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820390062</els_id><sourcerecordid>2179474355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EosPAnhXykk2G69ieJCyQqhE_lSohoSKxsxznpnGV2MF2WobX4IXxzJQKFnhjS_ec71j3EPKSwYZBJd7ctGbz5ZyxegOwlXz7iKwY1Lzgkn17TFYAJSuaUtZn5FmMN5CPaNhTcsZhW4FsYEV-XaGj2iV0TtM5-ITWRaoDUh2jN1Yn7OidTQNNA1Lj88C64zsuc9CTH9Esow7Uh2vt7E-drHfU90fJPPjk4z4mnOjFwYDB-Gke8ccBshtGPe07P3mnIw05eNChS9Y-J096PUZ8cX-vydcP7692n4rLzx8vdueXhRGiSoU0GqAWDJF1LdYGGJa8bXtR9Zx1VS2hYbztJYfeALCqKUsmJS8NINeN5HxN3p2489JO2Bl0KehRzcFOOuyV11b9O3F2UNf-Vm0FP2wwA17fA4L_vmBMarLR4Dhqh36JqsyhohI8p64JnKQm-BgD9g8xDNShS5W7VMcu1anLbHn19_ceDH_Ky4K3JwHmJd1aDCoai85gZwOapDpv_0__DcgkswQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179474355</pqid></control><display><type>article</type><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</creator><creatorcontrib>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</creatorcontrib><description>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006536</identifier><identifier>PMID: 30670590</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - metabolism ; Chlorophyll - metabolism ; cryo-electron microscopy ; cryo-electron microscopy (cryo-EM) ; Crystallography, X-Ray ; green algae ; LHCI ; light-harvesting complex (antenna complex) ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; outer antenna ; photosynthesis ; photosynthetic efficiency ; photosystem I ; Photosystem I Protein Complex - chemistry ; Photosystem I Protein Complex - metabolism ; Plant Biology ; single-particle analysis ; Spectrometry, Fluorescence</subject><ispartof>The Journal of biological chemistry, 2019-03, Vol.294 (12), p.4304-4314</ispartof><rights>2019 © 2019 Kubota-Kawai et al.</rights><rights>2019 Kubota-Kawai et al.</rights><rights>2019 Kubota-Kawai et al. 2019 Kubota-Kawai et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</citedby><cites>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</cites><orcidid>0000-0003-3380-3953 ; 0000-0002-4813-2120 ; 0000-0002-1535-6419 ; 0000-0003-2037-255X ; 0000-0001-6068-1328 ; 0000-0001-7804-102X ; 0000-0002-3028-3203 ; 0000-0001-9446-3652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433067/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433067/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30670590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubota-Kawai, Hisako</creatorcontrib><creatorcontrib>Burton-Smith, Raymond N.</creatorcontrib><creatorcontrib>Tokutsu, Ryutaro</creatorcontrib><creatorcontrib>Song, Chihong</creatorcontrib><creatorcontrib>Akimoto, Seiji</creatorcontrib><creatorcontrib>Yokono, Makio</creatorcontrib><creatorcontrib>Ueno, Yoshifumi</creatorcontrib><creatorcontrib>Kim, Eunchul</creatorcontrib><creatorcontrib>Watanabe, Akimasa</creatorcontrib><creatorcontrib>Murata, Kazuyoshi</creatorcontrib><creatorcontrib>Minagawa, Jun</creatorcontrib><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</description><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>cryo-electron microscopy</subject><subject>cryo-electron microscopy (cryo-EM)</subject><subject>Crystallography, X-Ray</subject><subject>green algae</subject><subject>LHCI</subject><subject>light-harvesting complex (antenna complex)</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>outer antenna</subject><subject>photosynthesis</subject><subject>photosynthetic efficiency</subject><subject>photosystem I</subject><subject>Photosystem I Protein Complex - chemistry</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Plant Biology</subject><subject>single-particle analysis</subject><subject>Spectrometry, Fluorescence</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EosPAnhXykk2G69ieJCyQqhE_lSohoSKxsxznpnGV2MF2WobX4IXxzJQKFnhjS_ec71j3EPKSwYZBJd7ctGbz5ZyxegOwlXz7iKwY1Lzgkn17TFYAJSuaUtZn5FmMN5CPaNhTcsZhW4FsYEV-XaGj2iV0TtM5-ITWRaoDUh2jN1Yn7OidTQNNA1Lj88C64zsuc9CTH9Esow7Uh2vt7E-drHfU90fJPPjk4z4mnOjFwYDB-Gke8ccBshtGPe07P3mnIw05eNChS9Y-J096PUZ8cX-vydcP7692n4rLzx8vdueXhRGiSoU0GqAWDJF1LdYGGJa8bXtR9Zx1VS2hYbztJYfeALCqKUsmJS8NINeN5HxN3p2489JO2Bl0KehRzcFOOuyV11b9O3F2UNf-Vm0FP2wwA17fA4L_vmBMarLR4Dhqh36JqsyhohI8p64JnKQm-BgD9g8xDNShS5W7VMcu1anLbHn19_ceDH_Ky4K3JwHmJd1aDCoai85gZwOapDpv_0__DcgkswQ</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Kubota-Kawai, Hisako</creator><creator>Burton-Smith, Raymond N.</creator><creator>Tokutsu, Ryutaro</creator><creator>Song, Chihong</creator><creator>Akimoto, Seiji</creator><creator>Yokono, Makio</creator><creator>Ueno, Yoshifumi</creator><creator>Kim, Eunchul</creator><creator>Watanabe, Akimasa</creator><creator>Murata, Kazuyoshi</creator><creator>Minagawa, Jun</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3380-3953</orcidid><orcidid>https://orcid.org/0000-0002-4813-2120</orcidid><orcidid>https://orcid.org/0000-0002-1535-6419</orcidid><orcidid>https://orcid.org/0000-0003-2037-255X</orcidid><orcidid>https://orcid.org/0000-0001-6068-1328</orcidid><orcidid>https://orcid.org/0000-0001-7804-102X</orcidid><orcidid>https://orcid.org/0000-0002-3028-3203</orcidid><orcidid>https://orcid.org/0000-0001-9446-3652</orcidid></search><sort><creationdate>20190322</creationdate><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><author>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>cryo-electron microscopy</topic><topic>cryo-electron microscopy (cryo-EM)</topic><topic>Crystallography, X-Ray</topic><topic>green algae</topic><topic>LHCI</topic><topic>light-harvesting complex (antenna complex)</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>outer antenna</topic><topic>photosynthesis</topic><topic>photosynthetic efficiency</topic><topic>photosystem I</topic><topic>Photosystem I Protein Complex - chemistry</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Plant Biology</topic><topic>single-particle analysis</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota-Kawai, Hisako</creatorcontrib><creatorcontrib>Burton-Smith, Raymond N.</creatorcontrib><creatorcontrib>Tokutsu, Ryutaro</creatorcontrib><creatorcontrib>Song, Chihong</creatorcontrib><creatorcontrib>Akimoto, Seiji</creatorcontrib><creatorcontrib>Yokono, Makio</creatorcontrib><creatorcontrib>Ueno, Yoshifumi</creatorcontrib><creatorcontrib>Kim, Eunchul</creatorcontrib><creatorcontrib>Watanabe, Akimasa</creatorcontrib><creatorcontrib>Murata, Kazuyoshi</creatorcontrib><creatorcontrib>Minagawa, Jun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota-Kawai, Hisako</au><au>Burton-Smith, Raymond N.</au><au>Tokutsu, Ryutaro</au><au>Song, Chihong</au><au>Akimoto, Seiji</au><au>Yokono, Makio</au><au>Ueno, Yoshifumi</au><au>Kim, Eunchul</au><au>Watanabe, Akimasa</au><au>Murata, Kazuyoshi</au><au>Minagawa, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>294</volume><issue>12</issue><spage>4304</spage><epage>4314</epage><pages>4304-4314</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30670590</pmid><doi>10.1074/jbc.RA118.006536</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3380-3953</orcidid><orcidid>https://orcid.org/0000-0002-4813-2120</orcidid><orcidid>https://orcid.org/0000-0002-1535-6419</orcidid><orcidid>https://orcid.org/0000-0003-2037-255X</orcidid><orcidid>https://orcid.org/0000-0001-6068-1328</orcidid><orcidid>https://orcid.org/0000-0001-7804-102X</orcidid><orcidid>https://orcid.org/0000-0002-3028-3203</orcidid><orcidid>https://orcid.org/0000-0001-9446-3652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-03, Vol.294 (12), p.4304-4314
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433067
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Chlamydomonas
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - metabolism
Chlorophyll - metabolism
cryo-electron microscopy
cryo-electron microscopy (cryo-EM)
Crystallography, X-Ray
green algae
LHCI
light-harvesting complex (antenna complex)
Light-Harvesting Protein Complexes - chemistry
Light-Harvesting Protein Complexes - metabolism
outer antenna
photosynthesis
photosynthetic efficiency
photosystem I
Photosystem I Protein Complex - chemistry
Photosystem I Protein Complex - metabolism
Plant Biology
single-particle analysis
Spectrometry, Fluorescence
title Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ten%20antenna%20proteins%20are%20associated%20with%20the%20core%20in%20the%20supramolecular%20organization%20of%20the%20photosystem%20I%20supercomplex%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kubota-Kawai,%20Hisako&rft.date=2019-03-22&rft.volume=294&rft.issue=12&rft.spage=4304&rft.epage=4314&rft.pages=4304-4314&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006536&rft_dat=%3Cproquest_pubme%3E2179474355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179474355&rft_id=info:pmid/30670590&rft_els_id=S0021925820390062&rfr_iscdi=true