Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii
Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-03, Vol.294 (12), p.4304-4314 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4314 |
---|---|
container_issue | 12 |
container_start_page | 4304 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Kubota-Kawai, Hisako Burton-Smith, Raymond N. Tokutsu, Ryutaro Song, Chihong Akimoto, Seiji Yokono, Makio Ueno, Yoshifumi Kim, Eunchul Watanabe, Akimasa Murata, Kazuyoshi Minagawa, Jun |
description | Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants. |
doi_str_mv | 10.1074/jbc.RA118.006536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820390062</els_id><sourcerecordid>2179474355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EosPAnhXykk2G69ieJCyQqhE_lSohoSKxsxznpnGV2MF2WobX4IXxzJQKFnhjS_ec71j3EPKSwYZBJd7ctGbz5ZyxegOwlXz7iKwY1Lzgkn17TFYAJSuaUtZn5FmMN5CPaNhTcsZhW4FsYEV-XaGj2iV0TtM5-ITWRaoDUh2jN1Yn7OidTQNNA1Lj88C64zsuc9CTH9Esow7Uh2vt7E-drHfU90fJPPjk4z4mnOjFwYDB-Gke8ccBshtGPe07P3mnIw05eNChS9Y-J096PUZ8cX-vydcP7692n4rLzx8vdueXhRGiSoU0GqAWDJF1LdYGGJa8bXtR9Zx1VS2hYbztJYfeALCqKUsmJS8NINeN5HxN3p2489JO2Bl0KehRzcFOOuyV11b9O3F2UNf-Vm0FP2wwA17fA4L_vmBMarLR4Dhqh36JqsyhohI8p64JnKQm-BgD9g8xDNShS5W7VMcu1anLbHn19_ceDH_Ky4K3JwHmJd1aDCoai85gZwOapDpv_0__DcgkswQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179474355</pqid></control><display><type>article</type><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</creator><creatorcontrib>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</creatorcontrib><description>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006536</identifier><identifier>PMID: 30670590</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - metabolism ; Chlorophyll - metabolism ; cryo-electron microscopy ; cryo-electron microscopy (cryo-EM) ; Crystallography, X-Ray ; green algae ; LHCI ; light-harvesting complex (antenna complex) ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; outer antenna ; photosynthesis ; photosynthetic efficiency ; photosystem I ; Photosystem I Protein Complex - chemistry ; Photosystem I Protein Complex - metabolism ; Plant Biology ; single-particle analysis ; Spectrometry, Fluorescence</subject><ispartof>The Journal of biological chemistry, 2019-03, Vol.294 (12), p.4304-4314</ispartof><rights>2019 © 2019 Kubota-Kawai et al.</rights><rights>2019 Kubota-Kawai et al.</rights><rights>2019 Kubota-Kawai et al. 2019 Kubota-Kawai et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</citedby><cites>FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</cites><orcidid>0000-0003-3380-3953 ; 0000-0002-4813-2120 ; 0000-0002-1535-6419 ; 0000-0003-2037-255X ; 0000-0001-6068-1328 ; 0000-0001-7804-102X ; 0000-0002-3028-3203 ; 0000-0001-9446-3652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433067/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433067/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30670590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubota-Kawai, Hisako</creatorcontrib><creatorcontrib>Burton-Smith, Raymond N.</creatorcontrib><creatorcontrib>Tokutsu, Ryutaro</creatorcontrib><creatorcontrib>Song, Chihong</creatorcontrib><creatorcontrib>Akimoto, Seiji</creatorcontrib><creatorcontrib>Yokono, Makio</creatorcontrib><creatorcontrib>Ueno, Yoshifumi</creatorcontrib><creatorcontrib>Kim, Eunchul</creatorcontrib><creatorcontrib>Watanabe, Akimasa</creatorcontrib><creatorcontrib>Murata, Kazuyoshi</creatorcontrib><creatorcontrib>Minagawa, Jun</creatorcontrib><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</description><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>cryo-electron microscopy</subject><subject>cryo-electron microscopy (cryo-EM)</subject><subject>Crystallography, X-Ray</subject><subject>green algae</subject><subject>LHCI</subject><subject>light-harvesting complex (antenna complex)</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>outer antenna</subject><subject>photosynthesis</subject><subject>photosynthetic efficiency</subject><subject>photosystem I</subject><subject>Photosystem I Protein Complex - chemistry</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Plant Biology</subject><subject>single-particle analysis</subject><subject>Spectrometry, Fluorescence</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EosPAnhXykk2G69ieJCyQqhE_lSohoSKxsxznpnGV2MF2WobX4IXxzJQKFnhjS_ec71j3EPKSwYZBJd7ctGbz5ZyxegOwlXz7iKwY1Lzgkn17TFYAJSuaUtZn5FmMN5CPaNhTcsZhW4FsYEV-XaGj2iV0TtM5-ITWRaoDUh2jN1Yn7OidTQNNA1Lj88C64zsuc9CTH9Esow7Uh2vt7E-drHfU90fJPPjk4z4mnOjFwYDB-Gke8ccBshtGPe07P3mnIw05eNChS9Y-J096PUZ8cX-vydcP7692n4rLzx8vdueXhRGiSoU0GqAWDJF1LdYGGJa8bXtR9Zx1VS2hYbztJYfeALCqKUsmJS8NINeN5HxN3p2489JO2Bl0KehRzcFOOuyV11b9O3F2UNf-Vm0FP2wwA17fA4L_vmBMarLR4Dhqh36JqsyhohI8p64JnKQm-BgD9g8xDNShS5W7VMcu1anLbHn19_ceDH_Ky4K3JwHmJd1aDCoai85gZwOapDpv_0__DcgkswQ</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Kubota-Kawai, Hisako</creator><creator>Burton-Smith, Raymond N.</creator><creator>Tokutsu, Ryutaro</creator><creator>Song, Chihong</creator><creator>Akimoto, Seiji</creator><creator>Yokono, Makio</creator><creator>Ueno, Yoshifumi</creator><creator>Kim, Eunchul</creator><creator>Watanabe, Akimasa</creator><creator>Murata, Kazuyoshi</creator><creator>Minagawa, Jun</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3380-3953</orcidid><orcidid>https://orcid.org/0000-0002-4813-2120</orcidid><orcidid>https://orcid.org/0000-0002-1535-6419</orcidid><orcidid>https://orcid.org/0000-0003-2037-255X</orcidid><orcidid>https://orcid.org/0000-0001-6068-1328</orcidid><orcidid>https://orcid.org/0000-0001-7804-102X</orcidid><orcidid>https://orcid.org/0000-0002-3028-3203</orcidid><orcidid>https://orcid.org/0000-0001-9446-3652</orcidid></search><sort><creationdate>20190322</creationdate><title>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</title><author>Kubota-Kawai, Hisako ; Burton-Smith, Raymond N. ; Tokutsu, Ryutaro ; Song, Chihong ; Akimoto, Seiji ; Yokono, Makio ; Ueno, Yoshifumi ; Kim, Eunchul ; Watanabe, Akimasa ; Murata, Kazuyoshi ; Minagawa, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-5ca00841ee1dbe8c01e23bbf47f31d7850913bf530fc001792215532c0e3a9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>cryo-electron microscopy</topic><topic>cryo-electron microscopy (cryo-EM)</topic><topic>Crystallography, X-Ray</topic><topic>green algae</topic><topic>LHCI</topic><topic>light-harvesting complex (antenna complex)</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>outer antenna</topic><topic>photosynthesis</topic><topic>photosynthetic efficiency</topic><topic>photosystem I</topic><topic>Photosystem I Protein Complex - chemistry</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Plant Biology</topic><topic>single-particle analysis</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota-Kawai, Hisako</creatorcontrib><creatorcontrib>Burton-Smith, Raymond N.</creatorcontrib><creatorcontrib>Tokutsu, Ryutaro</creatorcontrib><creatorcontrib>Song, Chihong</creatorcontrib><creatorcontrib>Akimoto, Seiji</creatorcontrib><creatorcontrib>Yokono, Makio</creatorcontrib><creatorcontrib>Ueno, Yoshifumi</creatorcontrib><creatorcontrib>Kim, Eunchul</creatorcontrib><creatorcontrib>Watanabe, Akimasa</creatorcontrib><creatorcontrib>Murata, Kazuyoshi</creatorcontrib><creatorcontrib>Minagawa, Jun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota-Kawai, Hisako</au><au>Burton-Smith, Raymond N.</au><au>Tokutsu, Ryutaro</au><au>Song, Chihong</au><au>Akimoto, Seiji</au><au>Yokono, Makio</au><au>Ueno, Yoshifumi</au><au>Kim, Eunchul</au><au>Watanabe, Akimasa</au><au>Murata, Kazuyoshi</au><au>Minagawa, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>294</volume><issue>12</issue><spage>4304</spage><epage>4314</epage><pages>4304-4314</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Photosystem I (PSI) is a large pigment–protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI–LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30670590</pmid><doi>10.1074/jbc.RA118.006536</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3380-3953</orcidid><orcidid>https://orcid.org/0000-0002-4813-2120</orcidid><orcidid>https://orcid.org/0000-0002-1535-6419</orcidid><orcidid>https://orcid.org/0000-0003-2037-255X</orcidid><orcidid>https://orcid.org/0000-0001-6068-1328</orcidid><orcidid>https://orcid.org/0000-0001-7804-102X</orcidid><orcidid>https://orcid.org/0000-0002-3028-3203</orcidid><orcidid>https://orcid.org/0000-0001-9446-3652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-03, Vol.294 (12), p.4304-4314 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433067 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Chlamydomonas Chlamydomonas reinhardtii Chlamydomonas reinhardtii - metabolism Chlorophyll - metabolism cryo-electron microscopy cryo-electron microscopy (cryo-EM) Crystallography, X-Ray green algae LHCI light-harvesting complex (antenna complex) Light-Harvesting Protein Complexes - chemistry Light-Harvesting Protein Complexes - metabolism outer antenna photosynthesis photosynthetic efficiency photosystem I Photosystem I Protein Complex - chemistry Photosystem I Protein Complex - metabolism Plant Biology single-particle analysis Spectrometry, Fluorescence |
title | Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ten%20antenna%20proteins%20are%20associated%20with%20the%20core%20in%20the%20supramolecular%20organization%20of%20the%20photosystem%20I%20supercomplex%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kubota-Kawai,%20Hisako&rft.date=2019-03-22&rft.volume=294&rft.issue=12&rft.spage=4304&rft.epage=4314&rft.pages=4304-4314&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006536&rft_dat=%3Cproquest_pubme%3E2179474355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179474355&rft_id=info:pmid/30670590&rft_els_id=S0021925820390062&rfr_iscdi=true |