Theory of mechanochemical patterning in biphasic biological tissues
The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to pa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (12), p.5344-5349 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5349 |
---|---|
container_issue | 12 |
container_start_page | 5344 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Recho, Pierre Hallou, Adrien Hannezo, Edouard |
description | The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis. |
doi_str_mv | 10.1073/pnas.1813255116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26696527</jstor_id><sourcerecordid>26696527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gRaiUs5bDtje_1xQaqiQpEiccndchw762h3vdibSv3v2ZASoCdbfr95M-NHyHuEawTJbsbBlmtUyGjTIIoXZIGgsRZcw0uyAKCyVpzyC_KmlD0A6EbBa3LBQKFWii_Ict36lB-rFKreu9YOybW-j8521WinyechDrsqDtUmjq0t0c2X1KXdb2KKpRx8eUteBdsV_-7pvCTrr3fr5X29-vHt-_J2VTsu5VQHDN4CCO0ZBoeS-k3Y-oZDsDpwSzd06zSlQivvZWBayyZovrUoNDjq2CX5crIdD5veb50fpmw7M-bY2_xoko3mf2WIrdmlByM4Q8robPD5ZNA-K7u_XZnjG1BQgkr-gDN79dQsp5_zjpPpY3G-6-zg06EYiko2yFQjZ_TTM3SfDnmYf8JQCiARFdczdXOiXE6lZB_OEyCYY5bmmKX5m-Vc8fHffc_8n_Bm4MMJ2Jcp5bNOhdCioZL9AoiqpLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200711849</pqid></control><display><type>article</type><title>Theory of mechanochemical patterning in biphasic biological tissues</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</creator><creatorcontrib>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</creatorcontrib><description>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1813255116</identifier><identifier>PMID: 30819884</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Physics ; Biological Sciences ; Body Patterning - physiology ; Cell differentiation ; Cell Differentiation - physiology ; Differentiation (biology) ; Diffusion ; Kinetics ; Mechanics (physics) ; Models, Biological ; Morphogenesis ; Morphogenesis - physiology ; Pattern formation ; Patterning ; Physical Sciences ; Physics ; Protein Transport - physiology ; Reaction kinetics ; Rheological properties ; Rheology ; Stability ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5344-5349</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 19, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</citedby><cites>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</cites><orcidid>0000-0002-3162-7848 ; 0000-0001-6005-1561 ; 0000-0001-8259-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26696527$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26696527$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30819884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02086274$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Hallou, Adrien</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><title>Theory of mechanochemical patterning in biphasic biological tissues</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</description><subject>Animals</subject><subject>Biological Physics</subject><subject>Biological Sciences</subject><subject>Body Patterning - physiology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Differentiation (biology)</subject><subject>Diffusion</subject><subject>Kinetics</subject><subject>Mechanics (physics)</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Morphogenesis - physiology</subject><subject>Pattern formation</subject><subject>Patterning</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Protein Transport - physiology</subject><subject>Reaction kinetics</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Stability</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw5gRaiUs5bDtje_1xQaqiQpEiccndchw762h3vdibSv3v2ZASoCdbfr95M-NHyHuEawTJbsbBlmtUyGjTIIoXZIGgsRZcw0uyAKCyVpzyC_KmlD0A6EbBa3LBQKFWii_Ict36lB-rFKreu9YOybW-j8521WinyechDrsqDtUmjq0t0c2X1KXdb2KKpRx8eUteBdsV_-7pvCTrr3fr5X29-vHt-_J2VTsu5VQHDN4CCO0ZBoeS-k3Y-oZDsDpwSzd06zSlQivvZWBayyZovrUoNDjq2CX5crIdD5veb50fpmw7M-bY2_xoko3mf2WIrdmlByM4Q8robPD5ZNA-K7u_XZnjG1BQgkr-gDN79dQsp5_zjpPpY3G-6-zg06EYiko2yFQjZ_TTM3SfDnmYf8JQCiARFdczdXOiXE6lZB_OEyCYY5bmmKX5m-Vc8fHffc_8n_Bm4MMJ2Jcp5bNOhdCioZL9AoiqpLQ</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Recho, Pierre</creator><creator>Hallou, Adrien</creator><creator>Hannezo, Edouard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3162-7848</orcidid><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid></search><sort><creationdate>20190319</creationdate><title>Theory of mechanochemical patterning in biphasic biological tissues</title><author>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological Physics</topic><topic>Biological Sciences</topic><topic>Body Patterning - physiology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Differentiation (biology)</topic><topic>Diffusion</topic><topic>Kinetics</topic><topic>Mechanics (physics)</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Morphogenesis - physiology</topic><topic>Pattern formation</topic><topic>Patterning</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Protein Transport - physiology</topic><topic>Reaction kinetics</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Stability</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Hallou, Adrien</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Recho, Pierre</au><au>Hallou, Adrien</au><au>Hannezo, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of mechanochemical patterning in biphasic biological tissues</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>5344</spage><epage>5349</epage><pages>5344-5349</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30819884</pmid><doi>10.1073/pnas.1813255116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3162-7848</orcidid><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5344-5349 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431232 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Physics Biological Sciences Body Patterning - physiology Cell differentiation Cell Differentiation - physiology Differentiation (biology) Diffusion Kinetics Mechanics (physics) Models, Biological Morphogenesis Morphogenesis - physiology Pattern formation Patterning Physical Sciences Physics Protein Transport - physiology Reaction kinetics Rheological properties Rheology Stability Tissues |
title | Theory of mechanochemical patterning in biphasic biological tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20mechanochemical%20patterning%20in%20biphasic%20biological%20tissues&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Recho,%20Pierre&rft.date=2019-03-19&rft.volume=116&rft.issue=12&rft.spage=5344&rft.epage=5349&rft.pages=5344-5349&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1813255116&rft_dat=%3Cjstor_pubme%3E26696527%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200711849&rft_id=info:pmid/30819884&rft_jstor_id=26696527&rfr_iscdi=true |