Theory of mechanochemical patterning in biphasic biological tissues

The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (12), p.5344-5349
Hauptverfasser: Recho, Pierre, Hallou, Adrien, Hannezo, Edouard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5349
container_issue 12
container_start_page 5344
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Recho, Pierre
Hallou, Adrien
Hannezo, Edouard
description The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.
doi_str_mv 10.1073/pnas.1813255116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26696527</jstor_id><sourcerecordid>26696527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gRaiUs5bDtje_1xQaqiQpEiccndchw762h3vdibSv3v2ZASoCdbfr95M-NHyHuEawTJbsbBlmtUyGjTIIoXZIGgsRZcw0uyAKCyVpzyC_KmlD0A6EbBa3LBQKFWii_Ict36lB-rFKreu9YOybW-j8521WinyechDrsqDtUmjq0t0c2X1KXdb2KKpRx8eUteBdsV_-7pvCTrr3fr5X29-vHt-_J2VTsu5VQHDN4CCO0ZBoeS-k3Y-oZDsDpwSzd06zSlQivvZWBayyZovrUoNDjq2CX5crIdD5veb50fpmw7M-bY2_xoko3mf2WIrdmlByM4Q8robPD5ZNA-K7u_XZnjG1BQgkr-gDN79dQsp5_zjpPpY3G-6-zg06EYiko2yFQjZ_TTM3SfDnmYf8JQCiARFdczdXOiXE6lZB_OEyCYY5bmmKX5m-Vc8fHffc_8n_Bm4MMJ2Jcp5bNOhdCioZL9AoiqpLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200711849</pqid></control><display><type>article</type><title>Theory of mechanochemical patterning in biphasic biological tissues</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</creator><creatorcontrib>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</creatorcontrib><description>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1813255116</identifier><identifier>PMID: 30819884</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Physics ; Biological Sciences ; Body Patterning - physiology ; Cell differentiation ; Cell Differentiation - physiology ; Differentiation (biology) ; Diffusion ; Kinetics ; Mechanics (physics) ; Models, Biological ; Morphogenesis ; Morphogenesis - physiology ; Pattern formation ; Patterning ; Physical Sciences ; Physics ; Protein Transport - physiology ; Reaction kinetics ; Rheological properties ; Rheology ; Stability ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5344-5349</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 19, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</citedby><cites>FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</cites><orcidid>0000-0002-3162-7848 ; 0000-0001-6005-1561 ; 0000-0001-8259-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26696527$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26696527$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30819884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02086274$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Hallou, Adrien</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><title>Theory of mechanochemical patterning in biphasic biological tissues</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</description><subject>Animals</subject><subject>Biological Physics</subject><subject>Biological Sciences</subject><subject>Body Patterning - physiology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Differentiation (biology)</subject><subject>Diffusion</subject><subject>Kinetics</subject><subject>Mechanics (physics)</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Morphogenesis - physiology</subject><subject>Pattern formation</subject><subject>Patterning</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Protein Transport - physiology</subject><subject>Reaction kinetics</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Stability</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw5gRaiUs5bDtje_1xQaqiQpEiccndchw762h3vdibSv3v2ZASoCdbfr95M-NHyHuEawTJbsbBlmtUyGjTIIoXZIGgsRZcw0uyAKCyVpzyC_KmlD0A6EbBa3LBQKFWii_Ict36lB-rFKreu9YOybW-j8521WinyechDrsqDtUmjq0t0c2X1KXdb2KKpRx8eUteBdsV_-7pvCTrr3fr5X29-vHt-_J2VTsu5VQHDN4CCO0ZBoeS-k3Y-oZDsDpwSzd06zSlQivvZWBayyZovrUoNDjq2CX5crIdD5veb50fpmw7M-bY2_xoko3mf2WIrdmlByM4Q8robPD5ZNA-K7u_XZnjG1BQgkr-gDN79dQsp5_zjpPpY3G-6-zg06EYiko2yFQjZ_TTM3SfDnmYf8JQCiARFdczdXOiXE6lZB_OEyCYY5bmmKX5m-Vc8fHffc_8n_Bm4MMJ2Jcp5bNOhdCioZL9AoiqpLQ</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Recho, Pierre</creator><creator>Hallou, Adrien</creator><creator>Hannezo, Edouard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3162-7848</orcidid><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid></search><sort><creationdate>20190319</creationdate><title>Theory of mechanochemical patterning in biphasic biological tissues</title><author>Recho, Pierre ; Hallou, Adrien ; Hannezo, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f1fea0069e31fc172ebfde540fa9f4a2b2dc922698ee7f39975f94da1690c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological Physics</topic><topic>Biological Sciences</topic><topic>Body Patterning - physiology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Differentiation (biology)</topic><topic>Diffusion</topic><topic>Kinetics</topic><topic>Mechanics (physics)</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Morphogenesis - physiology</topic><topic>Pattern formation</topic><topic>Patterning</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Protein Transport - physiology</topic><topic>Reaction kinetics</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Stability</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Hallou, Adrien</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Recho, Pierre</au><au>Hallou, Adrien</au><au>Hannezo, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of mechanochemical patterning in biphasic biological tissues</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>5344</spage><epage>5349</epage><pages>5344-5349</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a twophase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30819884</pmid><doi>10.1073/pnas.1813255116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3162-7848</orcidid><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5344-5349
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431232
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Physics
Biological Sciences
Body Patterning - physiology
Cell differentiation
Cell Differentiation - physiology
Differentiation (biology)
Diffusion
Kinetics
Mechanics (physics)
Models, Biological
Morphogenesis
Morphogenesis - physiology
Pattern formation
Patterning
Physical Sciences
Physics
Protein Transport - physiology
Reaction kinetics
Rheological properties
Rheology
Stability
Tissues
title Theory of mechanochemical patterning in biphasic biological tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20mechanochemical%20patterning%20in%20biphasic%20biological%20tissues&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Recho,%20Pierre&rft.date=2019-03-19&rft.volume=116&rft.issue=12&rft.spage=5344&rft.epage=5349&rft.pages=5344-5349&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1813255116&rft_dat=%3Cjstor_pubme%3E26696527%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200711849&rft_id=info:pmid/30819884&rft_jstor_id=26696527&rfr_iscdi=true