Genomic and molecular characterization of preterm birth

Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (12), p.5819-5827
Hauptverfasser: Knijnenburg, Theo A., Vockley, Joseph G., Chambwe, Nyasha, Gibbs, David L., Humphries, Crystal, Huddleston, Kathi C., Klein, Elisabeth, Kothiyal, Prachi, Tasseff, Ryan, Dhankani, Varsha, Bodian, Dale L., Wong, Wendy S. W., Glusman, Gustavo, Mauldin, Denise E., Miller, Michael, Slagel, Joseph, Elasady, Summer, Roach, Jared C., Kramer, Roger, Leinonen, Kalle, Linthorst, Jasper, Baveja, Rajiv, Baker, Robin, Solomon, Benjamin D., Eley, Greg, Iyer, Ramaswamy K., Maxwell, George L., Bernard, Brady, Shmulevich, Ilya, Hood, Leroy, Niederhuber, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5827
container_issue 12
container_start_page 5819
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Knijnenburg, Theo A.
Vockley, Joseph G.
Chambwe, Nyasha
Gibbs, David L.
Humphries, Crystal
Huddleston, Kathi C.
Klein, Elisabeth
Kothiyal, Prachi
Tasseff, Ryan
Dhankani, Varsha
Bodian, Dale L.
Wong, Wendy S. W.
Glusman, Gustavo
Mauldin, Denise E.
Miller, Michael
Slagel, Joseph
Elasady, Summer
Roach, Jared C.
Kramer, Roger
Leinonen, Kalle
Linthorst, Jasper
Baveja, Rajiv
Baker, Robin
Solomon, Benjamin D.
Eley, Greg
Iyer, Ramaswamy K.
Maxwell, George L.
Bernard, Brady
Shmulevich, Ilya
Hood, Leroy
Niederhuber, John E.
description Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.
doi_str_mv 10.1073/pnas.1716314116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26696590</jstor_id><sourcerecordid>26696590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-aedc6e19520cb2d94bd33817cd28b3d62453327df8a4c35c5f4cc7f3fef7a6543</originalsourceid><addsrcrecordid>eNpdkc1LwzAYh4Mobk7PnpSCFy_d3nw0aS-CDJ3CwIueQ5qmrqNtatIK-tebsTk_ToH8njy8b34InWOYYhB01rXKT7HAnGKGMT9AYwwZjjnL4BCNAYiIU0bYCJ14vwaALEnhGI0opJTSDMZILExrm0pHqi2ixtZGD7VykV4pp3RvXPWp-sq2kS2jzplw0UR55frVKToqVe3N2e6coJf7u-f5Q7x8WjzOb5exZoz2sTKF5gZnCQGdkyJjeUFpioUuSJrTghOWUEpEUaaKaZropGRai5KWphSKJ4xO0M3W2w15E2Sm7Z2qZeeqRrkPaVUl_yZttZKv9l1yRjHOcBBc7wTOvg3G97KpvDZ1rVpjBy8JTlMC4ZNEQK_-oWs7uDasJwkBEMHHNxPNtpR21ntnyv0wGOSmFLkpRf6UEl5c_t5hz3-3EICLLbD2vXX7nHCe8STkX_23kmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200711964</pqid></control><display><type>article</type><title>Genomic and molecular characterization of preterm birth</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Knijnenburg, Theo A. ; Vockley, Joseph G. ; Chambwe, Nyasha ; Gibbs, David L. ; Humphries, Crystal ; Huddleston, Kathi C. ; Klein, Elisabeth ; Kothiyal, Prachi ; Tasseff, Ryan ; Dhankani, Varsha ; Bodian, Dale L. ; Wong, Wendy S. W. ; Glusman, Gustavo ; Mauldin, Denise E. ; Miller, Michael ; Slagel, Joseph ; Elasady, Summer ; Roach, Jared C. ; Kramer, Roger ; Leinonen, Kalle ; Linthorst, Jasper ; Baveja, Rajiv ; Baker, Robin ; Solomon, Benjamin D. ; Eley, Greg ; Iyer, Ramaswamy K. ; Maxwell, George L. ; Bernard, Brady ; Shmulevich, Ilya ; Hood, Leroy ; Niederhuber, John E.</creator><creatorcontrib>Knijnenburg, Theo A. ; Vockley, Joseph G. ; Chambwe, Nyasha ; Gibbs, David L. ; Humphries, Crystal ; Huddleston, Kathi C. ; Klein, Elisabeth ; Kothiyal, Prachi ; Tasseff, Ryan ; Dhankani, Varsha ; Bodian, Dale L. ; Wong, Wendy S. W. ; Glusman, Gustavo ; Mauldin, Denise E. ; Miller, Michael ; Slagel, Joseph ; Elasady, Summer ; Roach, Jared C. ; Kramer, Roger ; Leinonen, Kalle ; Linthorst, Jasper ; Baveja, Rajiv ; Baker, Robin ; Solomon, Benjamin D. ; Eley, Greg ; Iyer, Ramaswamy K. ; Maxwell, George L. ; Bernard, Brady ; Shmulevich, Ilya ; Hood, Leroy ; Niederhuber, John E.</creatorcontrib><description>Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1716314116</identifier><identifier>PMID: 30833390</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biomarkers ; Birth ; Chemokines ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA sequencing ; Epidermal growth factor receptors ; Gene expression ; Gene loci ; Gene mapping ; Genes ; Genomes ; Genomics ; Immunity ; Morbidity ; Notch1 protein ; Phenotypes ; PNAS Plus ; Premature birth ; Prolactin ; Quantitative trait loci ; Ribonucleic acid ; RNA ; Signal transduction ; Signaling ; γ-Interferon</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5819-5827</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 19, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-aedc6e19520cb2d94bd33817cd28b3d62453327df8a4c35c5f4cc7f3fef7a6543</citedby><cites>FETCH-LOGICAL-c443t-aedc6e19520cb2d94bd33817cd28b3d62453327df8a4c35c5f4cc7f3fef7a6543</cites><orcidid>0000-0002-2812-0122 ; 0000-0001-8060-5955 ; 0000-0002-4410-8780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26696590$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26696590$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knijnenburg, Theo A.</creatorcontrib><creatorcontrib>Vockley, Joseph G.</creatorcontrib><creatorcontrib>Chambwe, Nyasha</creatorcontrib><creatorcontrib>Gibbs, David L.</creatorcontrib><creatorcontrib>Humphries, Crystal</creatorcontrib><creatorcontrib>Huddleston, Kathi C.</creatorcontrib><creatorcontrib>Klein, Elisabeth</creatorcontrib><creatorcontrib>Kothiyal, Prachi</creatorcontrib><creatorcontrib>Tasseff, Ryan</creatorcontrib><creatorcontrib>Dhankani, Varsha</creatorcontrib><creatorcontrib>Bodian, Dale L.</creatorcontrib><creatorcontrib>Wong, Wendy S. W.</creatorcontrib><creatorcontrib>Glusman, Gustavo</creatorcontrib><creatorcontrib>Mauldin, Denise E.</creatorcontrib><creatorcontrib>Miller, Michael</creatorcontrib><creatorcontrib>Slagel, Joseph</creatorcontrib><creatorcontrib>Elasady, Summer</creatorcontrib><creatorcontrib>Roach, Jared C.</creatorcontrib><creatorcontrib>Kramer, Roger</creatorcontrib><creatorcontrib>Leinonen, Kalle</creatorcontrib><creatorcontrib>Linthorst, Jasper</creatorcontrib><creatorcontrib>Baveja, Rajiv</creatorcontrib><creatorcontrib>Baker, Robin</creatorcontrib><creatorcontrib>Solomon, Benjamin D.</creatorcontrib><creatorcontrib>Eley, Greg</creatorcontrib><creatorcontrib>Iyer, Ramaswamy K.</creatorcontrib><creatorcontrib>Maxwell, George L.</creatorcontrib><creatorcontrib>Bernard, Brady</creatorcontrib><creatorcontrib>Shmulevich, Ilya</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><creatorcontrib>Niederhuber, John E.</creatorcontrib><title>Genomic and molecular characterization of preterm birth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.</description><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Birth</subject><subject>Chemokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Epidermal growth factor receptors</subject><subject>Gene expression</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Immunity</subject><subject>Morbidity</subject><subject>Notch1 protein</subject><subject>Phenotypes</subject><subject>PNAS Plus</subject><subject>Premature birth</subject><subject>Prolactin</subject><subject>Quantitative trait loci</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>γ-Interferon</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LwzAYh4Mobk7PnpSCFy_d3nw0aS-CDJ3CwIueQ5qmrqNtatIK-tebsTk_ToH8njy8b34InWOYYhB01rXKT7HAnGKGMT9AYwwZjjnL4BCNAYiIU0bYCJ14vwaALEnhGI0opJTSDMZILExrm0pHqi2ixtZGD7VykV4pp3RvXPWp-sq2kS2jzplw0UR55frVKToqVe3N2e6coJf7u-f5Q7x8WjzOb5exZoz2sTKF5gZnCQGdkyJjeUFpioUuSJrTghOWUEpEUaaKaZropGRai5KWphSKJ4xO0M3W2w15E2Sm7Z2qZeeqRrkPaVUl_yZttZKv9l1yRjHOcBBc7wTOvg3G97KpvDZ1rVpjBy8JTlMC4ZNEQK_-oWs7uDasJwkBEMHHNxPNtpR21ntnyv0wGOSmFLkpRf6UEl5c_t5hz3-3EICLLbD2vXX7nHCe8STkX_23kmc</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Knijnenburg, Theo A.</creator><creator>Vockley, Joseph G.</creator><creator>Chambwe, Nyasha</creator><creator>Gibbs, David L.</creator><creator>Humphries, Crystal</creator><creator>Huddleston, Kathi C.</creator><creator>Klein, Elisabeth</creator><creator>Kothiyal, Prachi</creator><creator>Tasseff, Ryan</creator><creator>Dhankani, Varsha</creator><creator>Bodian, Dale L.</creator><creator>Wong, Wendy S. W.</creator><creator>Glusman, Gustavo</creator><creator>Mauldin, Denise E.</creator><creator>Miller, Michael</creator><creator>Slagel, Joseph</creator><creator>Elasady, Summer</creator><creator>Roach, Jared C.</creator><creator>Kramer, Roger</creator><creator>Leinonen, Kalle</creator><creator>Linthorst, Jasper</creator><creator>Baveja, Rajiv</creator><creator>Baker, Robin</creator><creator>Solomon, Benjamin D.</creator><creator>Eley, Greg</creator><creator>Iyer, Ramaswamy K.</creator><creator>Maxwell, George L.</creator><creator>Bernard, Brady</creator><creator>Shmulevich, Ilya</creator><creator>Hood, Leroy</creator><creator>Niederhuber, John E.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2812-0122</orcidid><orcidid>https://orcid.org/0000-0001-8060-5955</orcidid><orcidid>https://orcid.org/0000-0002-4410-8780</orcidid></search><sort><creationdate>20190319</creationdate><title>Genomic and molecular characterization of preterm birth</title><author>Knijnenburg, Theo A. ; Vockley, Joseph G. ; Chambwe, Nyasha ; Gibbs, David L. ; Humphries, Crystal ; Huddleston, Kathi C. ; Klein, Elisabeth ; Kothiyal, Prachi ; Tasseff, Ryan ; Dhankani, Varsha ; Bodian, Dale L. ; Wong, Wendy S. W. ; Glusman, Gustavo ; Mauldin, Denise E. ; Miller, Michael ; Slagel, Joseph ; Elasady, Summer ; Roach, Jared C. ; Kramer, Roger ; Leinonen, Kalle ; Linthorst, Jasper ; Baveja, Rajiv ; Baker, Robin ; Solomon, Benjamin D. ; Eley, Greg ; Iyer, Ramaswamy K. ; Maxwell, George L. ; Bernard, Brady ; Shmulevich, Ilya ; Hood, Leroy ; Niederhuber, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-aedc6e19520cb2d94bd33817cd28b3d62453327df8a4c35c5f4cc7f3fef7a6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Birth</topic><topic>Chemokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Epidermal growth factor receptors</topic><topic>Gene expression</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Immunity</topic><topic>Morbidity</topic><topic>Notch1 protein</topic><topic>Phenotypes</topic><topic>PNAS Plus</topic><topic>Premature birth</topic><topic>Prolactin</topic><topic>Quantitative trait loci</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knijnenburg, Theo A.</creatorcontrib><creatorcontrib>Vockley, Joseph G.</creatorcontrib><creatorcontrib>Chambwe, Nyasha</creatorcontrib><creatorcontrib>Gibbs, David L.</creatorcontrib><creatorcontrib>Humphries, Crystal</creatorcontrib><creatorcontrib>Huddleston, Kathi C.</creatorcontrib><creatorcontrib>Klein, Elisabeth</creatorcontrib><creatorcontrib>Kothiyal, Prachi</creatorcontrib><creatorcontrib>Tasseff, Ryan</creatorcontrib><creatorcontrib>Dhankani, Varsha</creatorcontrib><creatorcontrib>Bodian, Dale L.</creatorcontrib><creatorcontrib>Wong, Wendy S. W.</creatorcontrib><creatorcontrib>Glusman, Gustavo</creatorcontrib><creatorcontrib>Mauldin, Denise E.</creatorcontrib><creatorcontrib>Miller, Michael</creatorcontrib><creatorcontrib>Slagel, Joseph</creatorcontrib><creatorcontrib>Elasady, Summer</creatorcontrib><creatorcontrib>Roach, Jared C.</creatorcontrib><creatorcontrib>Kramer, Roger</creatorcontrib><creatorcontrib>Leinonen, Kalle</creatorcontrib><creatorcontrib>Linthorst, Jasper</creatorcontrib><creatorcontrib>Baveja, Rajiv</creatorcontrib><creatorcontrib>Baker, Robin</creatorcontrib><creatorcontrib>Solomon, Benjamin D.</creatorcontrib><creatorcontrib>Eley, Greg</creatorcontrib><creatorcontrib>Iyer, Ramaswamy K.</creatorcontrib><creatorcontrib>Maxwell, George L.</creatorcontrib><creatorcontrib>Bernard, Brady</creatorcontrib><creatorcontrib>Shmulevich, Ilya</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><creatorcontrib>Niederhuber, John E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knijnenburg, Theo A.</au><au>Vockley, Joseph G.</au><au>Chambwe, Nyasha</au><au>Gibbs, David L.</au><au>Humphries, Crystal</au><au>Huddleston, Kathi C.</au><au>Klein, Elisabeth</au><au>Kothiyal, Prachi</au><au>Tasseff, Ryan</au><au>Dhankani, Varsha</au><au>Bodian, Dale L.</au><au>Wong, Wendy S. W.</au><au>Glusman, Gustavo</au><au>Mauldin, Denise E.</au><au>Miller, Michael</au><au>Slagel, Joseph</au><au>Elasady, Summer</au><au>Roach, Jared C.</au><au>Kramer, Roger</au><au>Leinonen, Kalle</au><au>Linthorst, Jasper</au><au>Baveja, Rajiv</au><au>Baker, Robin</au><au>Solomon, Benjamin D.</au><au>Eley, Greg</au><au>Iyer, Ramaswamy K.</au><au>Maxwell, George L.</au><au>Bernard, Brady</au><au>Shmulevich, Ilya</au><au>Hood, Leroy</au><au>Niederhuber, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic and molecular characterization of preterm birth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>5819</spage><epage>5827</epage><pages>5819-5827</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30833390</pmid><doi>10.1073/pnas.1716314116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2812-0122</orcidid><orcidid>https://orcid.org/0000-0001-8060-5955</orcidid><orcidid>https://orcid.org/0000-0002-4410-8780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5819-5827
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431191
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biomarkers
Birth
Chemokines
Deoxyribonucleic acid
DNA
DNA methylation
DNA sequencing
Epidermal growth factor receptors
Gene expression
Gene loci
Gene mapping
Genes
Genomes
Genomics
Immunity
Morbidity
Notch1 protein
Phenotypes
PNAS Plus
Premature birth
Prolactin
Quantitative trait loci
Ribonucleic acid
RNA
Signal transduction
Signaling
γ-Interferon
title Genomic and molecular characterization of preterm birth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20and%20molecular%20characterization%20of%20preterm%20birth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Knijnenburg,%20Theo%20A.&rft.date=2019-03-19&rft.volume=116&rft.issue=12&rft.spage=5819&rft.epage=5827&rft.pages=5819-5827&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1716314116&rft_dat=%3Cjstor_pubme%3E26696590%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200711964&rft_id=info:pmid/30833390&rft_jstor_id=26696590&rfr_iscdi=true