Almost partition identities

An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (12), p.5428-5436
Hauptverfasser: Andrews, George E., Ballantine, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5436
container_issue 12
container_start_page 5428
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Andrews, George E.
Ballantine, Cristina
description An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.
doi_str_mv 10.1073/pnas.1820945116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26696540</jstor_id><sourcerecordid>26696540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMotlbPHkTp0cu2M_lqchFK8QsKXvQcsmlWt-xu1mQr-O_dUq0KgQnMM-8MDyHnCBOEGZu2jU0TVBQ0F4jygAwRNGaSazgkQwA6yxSnfEBOUloDgBYKjsmAgWKMKTokF_OqDqkbtzZ2ZVeGZlyufLP9-nRKjgpbJX_2XUfk5e72efGQLZ_uHxfzZeY4ii5DDR4tUK-ZWuncSfSUMyWLWS5sAU7ynOeiKFgOEoRl_Ssc9TlT6K1Ujo3IzS633eS1X7l-f7SVaWNZ2_hpgi3N_05TvpnX8GEkZ4hc9AHX3wExvG986kxdJueryjY-bJKhqHpFigPt0ekOdTGkFH2xX4NgtkrNVqn5VdpPXP29bs__OOyByx2wTl2I-z6VUkvBgX0BHD58Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188208402</pqid></control><display><type>article</type><title>Almost partition identities</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Andrews, George E. ; Ballantine, Cristina</creator><creatorcontrib>Andrews, George E. ; Ballantine, Cristina</creatorcontrib><description>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1820945116</identifier><identifier>PMID: 30833382</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences ; PNAS Plus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5428-5436</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</citedby><cites>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26696540$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26696540$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrews, George E.</creatorcontrib><creatorcontrib>Ballantine, Cristina</creatorcontrib><title>Almost partition identities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</description><subject>Physical Sciences</subject><subject>PNAS Plus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMotlbPHkTp0cu2M_lqchFK8QsKXvQcsmlWt-xu1mQr-O_dUq0KgQnMM-8MDyHnCBOEGZu2jU0TVBQ0F4jygAwRNGaSazgkQwA6yxSnfEBOUloDgBYKjsmAgWKMKTokF_OqDqkbtzZ2ZVeGZlyufLP9-nRKjgpbJX_2XUfk5e72efGQLZ_uHxfzZeY4ii5DDR4tUK-ZWuncSfSUMyWLWS5sAU7ynOeiKFgOEoRl_Ssc9TlT6K1Ujo3IzS633eS1X7l-f7SVaWNZ2_hpgi3N_05TvpnX8GEkZ4hc9AHX3wExvG986kxdJueryjY-bJKhqHpFigPt0ekOdTGkFH2xX4NgtkrNVqn5VdpPXP29bs__OOyByx2wTl2I-z6VUkvBgX0BHD58Cg</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Andrews, George E.</creator><creator>Ballantine, Cristina</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190319</creationdate><title>Almost partition identities</title><author>Andrews, George E. ; Ballantine, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Physical Sciences</topic><topic>PNAS Plus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, George E.</creatorcontrib><creatorcontrib>Ballantine, Cristina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, George E.</au><au>Ballantine, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost partition identities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>5428</spage><epage>5436</epage><pages>5428-5436</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30833382</pmid><doi>10.1073/pnas.1820945116</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5428-5436
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431145
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Physical Sciences
PNAS Plus
title Almost partition identities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20partition%20identities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Andrews,%20George%20E.&rft.date=2019-03-19&rft.volume=116&rft.issue=12&rft.spage=5428&rft.epage=5436&rft.pages=5428-5436&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1820945116&rft_dat=%3Cjstor_pubme%3E26696540%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188208402&rft_id=info:pmid/30833382&rft_jstor_id=26696540&rfr_iscdi=true