Almost partition identities
An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of parti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (12), p.5428-5436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5436 |
---|---|
container_issue | 12 |
container_start_page | 5428 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Andrews, George E. Ballantine, Cristina |
description | An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity. |
doi_str_mv | 10.1073/pnas.1820945116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26696540</jstor_id><sourcerecordid>26696540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMotlbPHkTp0cu2M_lqchFK8QsKXvQcsmlWt-xu1mQr-O_dUq0KgQnMM-8MDyHnCBOEGZu2jU0TVBQ0F4jygAwRNGaSazgkQwA6yxSnfEBOUloDgBYKjsmAgWKMKTokF_OqDqkbtzZ2ZVeGZlyufLP9-nRKjgpbJX_2XUfk5e72efGQLZ_uHxfzZeY4ii5DDR4tUK-ZWuncSfSUMyWLWS5sAU7ynOeiKFgOEoRl_Ssc9TlT6K1Ujo3IzS633eS1X7l-f7SVaWNZ2_hpgi3N_05TvpnX8GEkZ4hc9AHX3wExvG986kxdJueryjY-bJKhqHpFigPt0ekOdTGkFH2xX4NgtkrNVqn5VdpPXP29bs__OOyByx2wTl2I-z6VUkvBgX0BHD58Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188208402</pqid></control><display><type>article</type><title>Almost partition identities</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Andrews, George E. ; Ballantine, Cristina</creator><creatorcontrib>Andrews, George E. ; Ballantine, Cristina</creatorcontrib><description>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1820945116</identifier><identifier>PMID: 30833382</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences ; PNAS Plus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5428-5436</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</citedby><cites>FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26696540$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26696540$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrews, George E.</creatorcontrib><creatorcontrib>Ballantine, Cristina</creatorcontrib><title>Almost partition identities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</description><subject>Physical Sciences</subject><subject>PNAS Plus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMotlbPHkTp0cu2M_lqchFK8QsKXvQcsmlWt-xu1mQr-O_dUq0KgQnMM-8MDyHnCBOEGZu2jU0TVBQ0F4jygAwRNGaSazgkQwA6yxSnfEBOUloDgBYKjsmAgWKMKTokF_OqDqkbtzZ2ZVeGZlyufLP9-nRKjgpbJX_2XUfk5e72efGQLZ_uHxfzZeY4ii5DDR4tUK-ZWuncSfSUMyWLWS5sAU7ynOeiKFgOEoRl_Ssc9TlT6K1Ujo3IzS633eS1X7l-f7SVaWNZ2_hpgi3N_05TvpnX8GEkZ4hc9AHX3wExvG986kxdJueryjY-bJKhqHpFigPt0ekOdTGkFH2xX4NgtkrNVqn5VdpPXP29bs__OOyByx2wTl2I-z6VUkvBgX0BHD58Cg</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Andrews, George E.</creator><creator>Ballantine, Cristina</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190319</creationdate><title>Almost partition identities</title><author>Andrews, George E. ; Ballantine, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-190e1a02e938d9bc61e24386f7b5af0c64b4b5ff3b0605a35a3fc2eb381ea68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Physical Sciences</topic><topic>PNAS Plus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, George E.</creatorcontrib><creatorcontrib>Ballantine, Cristina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, George E.</au><au>Ballantine, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost partition identities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>5428</spage><epage>5436</epage><pages>5428-5436</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>An almost partition identity is an identity for partition numbers that is true asymptotically 100% of the time and fails infinitely often. We prove a kind of almost partition identity, namely that the number of parts in all self-conjugate partitions of n is almost always equal to the number of partitions of n in which no odd part is repeated and there is exactly one even part (possibly repeated). Not only does the identity fail infinitely often, but also, the error grows without bound. In addition, we prove several identities involving the number of parts in restricted partitions. We show that the difference in the number of parts in all self-conjugate partitions of n and the number of parts in all partitions of n into distinct odd parts equals the number of partitions of n in which no odd part is repeated, the smallest part is odd, and there is exactly one even part (possibly repeated). We provide both analytic and combinatorial proofs of this identity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30833382</pmid><doi>10.1073/pnas.1820945116</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (12), p.5428-5436 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6431145 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Physical Sciences PNAS Plus |
title | Almost partition identities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20partition%20identities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Andrews,%20George%20E.&rft.date=2019-03-19&rft.volume=116&rft.issue=12&rft.spage=5428&rft.epage=5436&rft.pages=5428-5436&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1820945116&rft_dat=%3Cjstor_pubme%3E26696540%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188208402&rft_id=info:pmid/30833382&rft_jstor_id=26696540&rfr_iscdi=true |