A risk stratification tool for hospitalisation in Australia using primary care data

Predictive risk models using general practice (GP) data to predict the risk of hospitalisation have the potential to identify patients for targeted care. Effective use can help deliver significant reductions in the incidence of hospitalisation, particularly for patients with chronic conditions, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.5011-5011, Article 5011
Hauptverfasser: Khanna, Sankalp, Rolls, David A., Boyle, Justin, Xie, Yang, Jayasena, Rajiv, Hibbert, Marienne, Georgeff, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5011
container_issue 1
container_start_page 5011
container_title Scientific reports
container_volume 9
creator Khanna, Sankalp
Rolls, David A.
Boyle, Justin
Xie, Yang
Jayasena, Rajiv
Hibbert, Marienne
Georgeff, Michael
description Predictive risk models using general practice (GP) data to predict the risk of hospitalisation have the potential to identify patients for targeted care. Effective use can help deliver significant reductions in the incidence of hospitalisation, particularly for patients with chronic conditions, the highest consumers of hospital resources. There are currently no published validated risk models for the Australian context using GP data to predict hospitalisation. In addition, published models for other contexts typically rely on a patient’s history of prior hospitalisations, a field not commonly available in GP information systems, as a predictor. We present a predictive risk model developed for use by GPs to assist in targeting coordinated healthcare to patients most in need. The algorithm was developed and validated using a retrospective primary care cohort, linked to records of hospitalisation in Victoria, Australia, to predict the risk of hospitalisation within one year. Predictors employed include demographics, prescription history, pathology results and disease diagnoses. Prior hospitalisation information was not employed as a predictor. Our model shows good performance and has been implemented within primary care practices participating in Health Care Homes, an Australian Government initiative being trialled for providing ongoing comprehensive care for patients with chronic and complex conditions.
doi_str_mv 10.1038/s41598-019-41383-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195265335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-89af871032e06084681d3a80c5f97e8b9d9a9038884cbde3e58135c3e22f1df43</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVtQ_4EICbtyM5jlNNkIpvqDgQl2HNJNpU6eTmswI_fdmnFqrC7NIAve7597DAeAMoyuMqLiODHMpMoRlxjAVNFvvgSOCGM8IJWR_5z8ApzEuUDqcSIblIRhQJKREnB2B5xEMLr7B2ATduNKZdPsaNt5XsPQBzn1cuUZXLvYFV8NR28GV07CNrp7BVXBLHdbQ6GBhoRt9Ag5KXUV7unmPwevd7cv4IZs83T-OR5PMcEKaTEhdimEyQyzKkWC5wAXVAhleyqEVU1lILZNVIZiZFpZaLjDlhlpCSlyUjB6Dm1531U6XtjC27vZSm32U1079rtRurmb-Q-WMCCE7gcuNQPDvrY2NWrpobFXp2vo2KoJlzjETSCb04g-68G2ok72O4iTnlPJEkZ4ywccYbLldBiPVxab62FSKTX3Fptap6XzXxrblO6QE0B6IqVTPbPiZ_Y_sJ5oVpCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195265335</pqid></control><display><type>article</type><title>A risk stratification tool for hospitalisation in Australia using primary care data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khanna, Sankalp ; Rolls, David A. ; Boyle, Justin ; Xie, Yang ; Jayasena, Rajiv ; Hibbert, Marienne ; Georgeff, Michael</creator><creatorcontrib>Khanna, Sankalp ; Rolls, David A. ; Boyle, Justin ; Xie, Yang ; Jayasena, Rajiv ; Hibbert, Marienne ; Georgeff, Michael</creatorcontrib><description>Predictive risk models using general practice (GP) data to predict the risk of hospitalisation have the potential to identify patients for targeted care. Effective use can help deliver significant reductions in the incidence of hospitalisation, particularly for patients with chronic conditions, the highest consumers of hospital resources. There are currently no published validated risk models for the Australian context using GP data to predict hospitalisation. In addition, published models for other contexts typically rely on a patient’s history of prior hospitalisations, a field not commonly available in GP information systems, as a predictor. We present a predictive risk model developed for use by GPs to assist in targeting coordinated healthcare to patients most in need. The algorithm was developed and validated using a retrospective primary care cohort, linked to records of hospitalisation in Victoria, Australia, to predict the risk of hospitalisation within one year. Predictors employed include demographics, prescription history, pathology results and disease diagnoses. Prior hospitalisation information was not employed as a predictor. Our model shows good performance and has been implemented within primary care practices participating in Health Care Homes, an Australian Government initiative being trialled for providing ongoing comprehensive care for patients with chronic and complex conditions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41383-y</identifier><identifier>PMID: 30899054</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/531 ; 692/700/1538 ; Algorithms ; Australia - epidemiology ; Chronic illnesses ; Demography ; General Practice - statistics &amp; numerical data ; Health care ; Hospitalization - statistics &amp; numerical data ; Humanities and Social Sciences ; Humans ; Information systems ; multidisciplinary ; Multiple Chronic Conditions - epidemiology ; Patients ; Primary care ; Risk Assessment - statistics &amp; numerical data ; Risk Factors ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.5011-5011, Article 5011</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-89af871032e06084681d3a80c5f97e8b9d9a9038884cbde3e58135c3e22f1df43</citedby><cites>FETCH-LOGICAL-c522t-89af871032e06084681d3a80c5f97e8b9d9a9038884cbde3e58135c3e22f1df43</cites><orcidid>0000-0003-0397-9923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428894/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428894/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30899054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanna, Sankalp</creatorcontrib><creatorcontrib>Rolls, David A.</creatorcontrib><creatorcontrib>Boyle, Justin</creatorcontrib><creatorcontrib>Xie, Yang</creatorcontrib><creatorcontrib>Jayasena, Rajiv</creatorcontrib><creatorcontrib>Hibbert, Marienne</creatorcontrib><creatorcontrib>Georgeff, Michael</creatorcontrib><title>A risk stratification tool for hospitalisation in Australia using primary care data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Predictive risk models using general practice (GP) data to predict the risk of hospitalisation have the potential to identify patients for targeted care. Effective use can help deliver significant reductions in the incidence of hospitalisation, particularly for patients with chronic conditions, the highest consumers of hospital resources. There are currently no published validated risk models for the Australian context using GP data to predict hospitalisation. In addition, published models for other contexts typically rely on a patient’s history of prior hospitalisations, a field not commonly available in GP information systems, as a predictor. We present a predictive risk model developed for use by GPs to assist in targeting coordinated healthcare to patients most in need. The algorithm was developed and validated using a retrospective primary care cohort, linked to records of hospitalisation in Victoria, Australia, to predict the risk of hospitalisation within one year. Predictors employed include demographics, prescription history, pathology results and disease diagnoses. Prior hospitalisation information was not employed as a predictor. Our model shows good performance and has been implemented within primary care practices participating in Health Care Homes, an Australian Government initiative being trialled for providing ongoing comprehensive care for patients with chronic and complex conditions.</description><subject>639/705/531</subject><subject>692/700/1538</subject><subject>Algorithms</subject><subject>Australia - epidemiology</subject><subject>Chronic illnesses</subject><subject>Demography</subject><subject>General Practice - statistics &amp; numerical data</subject><subject>Health care</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Information systems</subject><subject>multidisciplinary</subject><subject>Multiple Chronic Conditions - epidemiology</subject><subject>Patients</subject><subject>Primary care</subject><subject>Risk Assessment - statistics &amp; numerical data</subject><subject>Risk Factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoVtQ_4EICbtyM5jlNNkIpvqDgQl2HNJNpU6eTmswI_fdmnFqrC7NIAve7597DAeAMoyuMqLiODHMpMoRlxjAVNFvvgSOCGM8IJWR_5z8ApzEuUDqcSIblIRhQJKREnB2B5xEMLr7B2ATduNKZdPsaNt5XsPQBzn1cuUZXLvYFV8NR28GV07CNrp7BVXBLHdbQ6GBhoRt9Ag5KXUV7unmPwevd7cv4IZs83T-OR5PMcEKaTEhdimEyQyzKkWC5wAXVAhleyqEVU1lILZNVIZiZFpZaLjDlhlpCSlyUjB6Dm1531U6XtjC27vZSm32U1079rtRurmb-Q-WMCCE7gcuNQPDvrY2NWrpobFXp2vo2KoJlzjETSCb04g-68G2ok72O4iTnlPJEkZ4ywccYbLldBiPVxab62FSKTX3Fptap6XzXxrblO6QE0B6IqVTPbPiZ_Y_sJ5oVpCY</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Khanna, Sankalp</creator><creator>Rolls, David A.</creator><creator>Boyle, Justin</creator><creator>Xie, Yang</creator><creator>Jayasena, Rajiv</creator><creator>Hibbert, Marienne</creator><creator>Georgeff, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0397-9923</orcidid></search><sort><creationdate>20190321</creationdate><title>A risk stratification tool for hospitalisation in Australia using primary care data</title><author>Khanna, Sankalp ; Rolls, David A. ; Boyle, Justin ; Xie, Yang ; Jayasena, Rajiv ; Hibbert, Marienne ; Georgeff, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-89af871032e06084681d3a80c5f97e8b9d9a9038884cbde3e58135c3e22f1df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/531</topic><topic>692/700/1538</topic><topic>Algorithms</topic><topic>Australia - epidemiology</topic><topic>Chronic illnesses</topic><topic>Demography</topic><topic>General Practice - statistics &amp; numerical data</topic><topic>Health care</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Information systems</topic><topic>multidisciplinary</topic><topic>Multiple Chronic Conditions - epidemiology</topic><topic>Patients</topic><topic>Primary care</topic><topic>Risk Assessment - statistics &amp; numerical data</topic><topic>Risk Factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Sankalp</creatorcontrib><creatorcontrib>Rolls, David A.</creatorcontrib><creatorcontrib>Boyle, Justin</creatorcontrib><creatorcontrib>Xie, Yang</creatorcontrib><creatorcontrib>Jayasena, Rajiv</creatorcontrib><creatorcontrib>Hibbert, Marienne</creatorcontrib><creatorcontrib>Georgeff, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Sankalp</au><au>Rolls, David A.</au><au>Boyle, Justin</au><au>Xie, Yang</au><au>Jayasena, Rajiv</au><au>Hibbert, Marienne</au><au>Georgeff, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A risk stratification tool for hospitalisation in Australia using primary care data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5011</spage><epage>5011</epage><pages>5011-5011</pages><artnum>5011</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Predictive risk models using general practice (GP) data to predict the risk of hospitalisation have the potential to identify patients for targeted care. Effective use can help deliver significant reductions in the incidence of hospitalisation, particularly for patients with chronic conditions, the highest consumers of hospital resources. There are currently no published validated risk models for the Australian context using GP data to predict hospitalisation. In addition, published models for other contexts typically rely on a patient’s history of prior hospitalisations, a field not commonly available in GP information systems, as a predictor. We present a predictive risk model developed for use by GPs to assist in targeting coordinated healthcare to patients most in need. The algorithm was developed and validated using a retrospective primary care cohort, linked to records of hospitalisation in Victoria, Australia, to predict the risk of hospitalisation within one year. Predictors employed include demographics, prescription history, pathology results and disease diagnoses. Prior hospitalisation information was not employed as a predictor. Our model shows good performance and has been implemented within primary care practices participating in Health Care Homes, an Australian Government initiative being trialled for providing ongoing comprehensive care for patients with chronic and complex conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30899054</pmid><doi>10.1038/s41598-019-41383-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0397-9923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-03, Vol.9 (1), p.5011-5011, Article 5011
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428894
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/705/531
692/700/1538
Algorithms
Australia - epidemiology
Chronic illnesses
Demography
General Practice - statistics & numerical data
Health care
Hospitalization - statistics & numerical data
Humanities and Social Sciences
Humans
Information systems
multidisciplinary
Multiple Chronic Conditions - epidemiology
Patients
Primary care
Risk Assessment - statistics & numerical data
Risk Factors
Science
Science (multidisciplinary)
title A risk stratification tool for hospitalisation in Australia using primary care data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20risk%20stratification%20tool%20for%20hospitalisation%20in%20Australia%20using%20primary%20care%20data&rft.jtitle=Scientific%20reports&rft.au=Khanna,%20Sankalp&rft.date=2019-03-21&rft.volume=9&rft.issue=1&rft.spage=5011&rft.epage=5011&rft.pages=5011-5011&rft.artnum=5011&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41383-y&rft_dat=%3Cproquest_pubme%3E2195265335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195265335&rft_id=info:pmid/30899054&rfr_iscdi=true