An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy

Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2019-02, Vol.21 (2), p.203-213
Hauptverfasser: Liu, Peter H., Shah, Richa B., Li, Yuanyuan, Arora, Arshi, Ung, Peter Man-Un, Raman, Renuka, Gorbatenko, Andrej, Kozono, Shingo, Zhou, Xiao Zhen, Brechin, Vincent, Barbaro, John M., Thompson, Ruth, White, Richard M., Aguirre-Ghiso, Julio A., Heymach, John V., Lu, Kun Ping, Silva, Jose M., Panageas, Katherine S., Schlessinger, Avner, Maki, Robert G., Skinner, Heath D., de Stanchina, Elisa, Sidi, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
14
59
64
82
96
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 203
container_title Nature cell biology
container_volume 21
creator Liu, Peter H.
Shah, Richa B.
Li, Yuanyuan
Arora, Arshi
Ung, Peter Man-Un
Raman, Renuka
Gorbatenko, Andrej
Kozono, Shingo
Zhou, Xiao Zhen
Brechin, Vincent
Barbaro, John M.
Thompson, Ruth
White, Richard M.
Aguirre-Ghiso, Julio A.
Heymach, John V.
Lu, Kun Ping
Silva, Jose M.
Panageas, Katherine S.
Schlessinger, Avner
Maki, Robert G.
Skinner, Heath D.
de Stanchina, Elisa
Sidi, Samuel
description Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR–IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target. Performing a small-molecule screen, Liu et al. identify IRAK as a regulator of PIDDosome activity and tumour radioresistance, and demonstrate a synergistic effect of targeting IRAK1 and PIN1 in response to ionizing radiation.
doi_str_mv 10.1038/s41556-018-0260-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603212</galeid><sourcerecordid>A572603212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-e48d5b12588414af426d60a5dbc7d15e1bb9012e7137d5a1dc8f39cee1317b613</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS1ERUvhAdggS2zYhHoc_2WDdFVBuWoFCIFYWo7jpK5y7YudVHTXd-ANeRKc3tICEquxNN-cOZ6D0DMgr4DU6igz4FxUBFRFqCCVfIAOgElRMSGbh8tb8ErWDd1Hj3O-IAQYI_IR2q-JEEwqcYC-rgJef1qdws_rHx_X7wFnPwQzjj4M2Hz3GXfJX7qMfZiSD9lbPM2bOCecXPZ5MsE6PEWcTOfN5GPA07lLZnv1BO31Zszu6W09RF_evvl8_K46-3CyPl6dVZY1aqocUx1vgXKlGDDTMyo6QQzvWis74A7atiFAnYRadtxAZ1VfN9Y5qEG2AupD9Hqnu53bjeusKz7NqLfJb0y60tF4_Xcn-HM9xEstGFWMLgIvbwVS_Da7POmNz9aNowkuzllTkE1xRQUr6It_0ItyiXKtG4pJxgSoe2owo9M-9LHstYuoXnFZYqop0ELBjrIp5pxcf2cZiF7C1btwdQlXL-FqWWae__nXu4nfaRaA7oBcWmFw6d7g_1V_AQAMr3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174744618</pqid></control><display><type>article</type><title>An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Liu, Peter H. ; Shah, Richa B. ; Li, Yuanyuan ; Arora, Arshi ; Ung, Peter Man-Un ; Raman, Renuka ; Gorbatenko, Andrej ; Kozono, Shingo ; Zhou, Xiao Zhen ; Brechin, Vincent ; Barbaro, John M. ; Thompson, Ruth ; White, Richard M. ; Aguirre-Ghiso, Julio A. ; Heymach, John V. ; Lu, Kun Ping ; Silva, Jose M. ; Panageas, Katherine S. ; Schlessinger, Avner ; Maki, Robert G. ; Skinner, Heath D. ; de Stanchina, Elisa ; Sidi, Samuel</creator><creatorcontrib>Liu, Peter H. ; Shah, Richa B. ; Li, Yuanyuan ; Arora, Arshi ; Ung, Peter Man-Un ; Raman, Renuka ; Gorbatenko, Andrej ; Kozono, Shingo ; Zhou, Xiao Zhen ; Brechin, Vincent ; Barbaro, John M. ; Thompson, Ruth ; White, Richard M. ; Aguirre-Ghiso, Julio A. ; Heymach, John V. ; Lu, Kun Ping ; Silva, Jose M. ; Panageas, Katherine S. ; Schlessinger, Avner ; Maki, Robert G. ; Skinner, Heath D. ; de Stanchina, Elisa ; Sidi, Samuel</creatorcontrib><description>Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR–IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target. Performing a small-molecule screen, Liu et al. identify IRAK as a regulator of PIDDosome activity and tumour radioresistance, and demonstrate a synergistic effect of targeting IRAK1 and PIN1 in response to ionizing radiation.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-018-0260-7</identifier><identifier>PMID: 30664786</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/2 ; 13/89 ; 14 ; 14/1 ; 14/19 ; 42/41 ; 59 ; 631/67 ; 631/67/1059/485 ; 631/67/1059/602 ; 631/80/86/2366 ; 64 ; 64/116 ; 64/60 ; 82 ; 96 ; 96/109 ; 96/95 ; Animals ; Anthelmintic agents ; Antiparasitic agents ; Apoptosis ; Benzimidazoles ; Biomedical and Life Sciences ; Cancer ; Cancer Research ; Cancer treatment ; Caspase ; Caspase-2 ; Cell Biology ; Cell Line, Tumor ; Chemoradiotherapy ; Cytokine receptors ; Developmental Biology ; Genetic aspects ; HCT116 Cells ; Health aspects ; HEK293 Cells ; HeLa Cells ; Humans ; Immune response ; Immune system ; Inhibitors ; Interleukin 1 ; Interleukin 1 receptors ; Interleukin-1 Receptor-Associated Kinases - antagonists &amp; inhibitors ; Interleukin-1 Receptor-Associated Kinases - genetics ; Interleukin-1 Receptor-Associated Kinases - metabolism ; Interleukins ; Ionizing radiation ; IRAK protein ; Life Sciences ; MCF-7 Cells ; Medical schools ; Methods ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Mutation ; MyD88 protein ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - radiotherapy ; NIMA-Interacting Peptidylprolyl Isomerase - antagonists &amp; inhibitors ; NIMA-Interacting Peptidylprolyl Isomerase - genetics ; NIMA-Interacting Peptidylprolyl Isomerase - metabolism ; Oxfendazole ; p53 Protein ; Pathogenic microorganisms ; Patient outcomes ; Peptidylprolyl isomerase ; Pin1 protein ; Proteins ; Radiation (Physics) ; Radiation therapy ; Radiation tolerance ; Radiation Tolerance - drug effects ; Radiation Tolerance - genetics ; Radiosensitivity ; Radiosensitizers ; Radiotherapy ; Signal Transduction ; Stem Cells ; Synergistic effect ; Toll-like receptors ; Toxicity ; TRAF6 protein ; Tumor proteins ; Tumor Suppressor Protein p53 - genetics ; Tumors ; Xenograft Model Antitumor Assays - methods ; Zebrafish</subject><ispartof>Nature cell biology, 2019-02, Vol.21 (2), p.203-213</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-e48d5b12588414af426d60a5dbc7d15e1bb9012e7137d5a1dc8f39cee1317b613</citedby><cites>FETCH-LOGICAL-c498t-e48d5b12588414af426d60a5dbc7d15e1bb9012e7137d5a1dc8f39cee1317b613</cites><orcidid>0000-0003-4007-7814 ; 0000-0002-6849-5252 ; 0000-0003-1836-151X ; 0000-0001-9099-9169 ; 0000-0001-7649-0673 ; 0000-0001-5037-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-018-0260-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-018-0260-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30664786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Peter H.</creatorcontrib><creatorcontrib>Shah, Richa B.</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Arora, Arshi</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Raman, Renuka</creatorcontrib><creatorcontrib>Gorbatenko, Andrej</creatorcontrib><creatorcontrib>Kozono, Shingo</creatorcontrib><creatorcontrib>Zhou, Xiao Zhen</creatorcontrib><creatorcontrib>Brechin, Vincent</creatorcontrib><creatorcontrib>Barbaro, John M.</creatorcontrib><creatorcontrib>Thompson, Ruth</creatorcontrib><creatorcontrib>White, Richard M.</creatorcontrib><creatorcontrib>Aguirre-Ghiso, Julio A.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Lu, Kun Ping</creatorcontrib><creatorcontrib>Silva, Jose M.</creatorcontrib><creatorcontrib>Panageas, Katherine S.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Maki, Robert G.</creatorcontrib><creatorcontrib>Skinner, Heath D.</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Sidi, Samuel</creatorcontrib><title>An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR–IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target. Performing a small-molecule screen, Liu et al. identify IRAK as a regulator of PIDDosome activity and tumour radioresistance, and demonstrate a synergistic effect of targeting IRAK1 and PIN1 in response to ionizing radiation.</description><subject>13/106</subject><subject>13/2</subject><subject>13/89</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>42/41</subject><subject>59</subject><subject>631/67</subject><subject>631/67/1059/485</subject><subject>631/67/1059/602</subject><subject>631/80/86/2366</subject><subject>64</subject><subject>64/116</subject><subject>64/60</subject><subject>82</subject><subject>96</subject><subject>96/109</subject><subject>96/95</subject><subject>Animals</subject><subject>Anthelmintic agents</subject><subject>Antiparasitic agents</subject><subject>Apoptosis</subject><subject>Benzimidazoles</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cancer treatment</subject><subject>Caspase</subject><subject>Caspase-2</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chemoradiotherapy</subject><subject>Cytokine receptors</subject><subject>Developmental Biology</subject><subject>Genetic aspects</subject><subject>HCT116 Cells</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inhibitors</subject><subject>Interleukin 1</subject><subject>Interleukin 1 receptors</subject><subject>Interleukin-1 Receptor-Associated Kinases - antagonists &amp; inhibitors</subject><subject>Interleukin-1 Receptor-Associated Kinases - genetics</subject><subject>Interleukin-1 Receptor-Associated Kinases - metabolism</subject><subject>Interleukins</subject><subject>Ionizing radiation</subject><subject>IRAK protein</subject><subject>Life Sciences</subject><subject>MCF-7 Cells</subject><subject>Medical schools</subject><subject>Methods</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>MyD88 protein</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - radiotherapy</subject><subject>NIMA-Interacting Peptidylprolyl Isomerase - antagonists &amp; inhibitors</subject><subject>NIMA-Interacting Peptidylprolyl Isomerase - genetics</subject><subject>NIMA-Interacting Peptidylprolyl Isomerase - metabolism</subject><subject>Oxfendazole</subject><subject>p53 Protein</subject><subject>Pathogenic microorganisms</subject><subject>Patient outcomes</subject><subject>Peptidylprolyl isomerase</subject><subject>Pin1 protein</subject><subject>Proteins</subject><subject>Radiation (Physics)</subject><subject>Radiation therapy</subject><subject>Radiation tolerance</subject><subject>Radiation Tolerance - drug effects</subject><subject>Radiation Tolerance - genetics</subject><subject>Radiosensitivity</subject><subject>Radiosensitizers</subject><subject>Radiotherapy</subject><subject>Signal Transduction</subject><subject>Stem Cells</subject><subject>Synergistic effect</subject><subject>Toll-like receptors</subject><subject>Toxicity</subject><subject>TRAF6 protein</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays - methods</subject><subject>Zebrafish</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1TAQhS1ERUvhAdggS2zYhHoc_2WDdFVBuWoFCIFYWo7jpK5y7YudVHTXd-ANeRKc3tICEquxNN-cOZ6D0DMgr4DU6igz4FxUBFRFqCCVfIAOgElRMSGbh8tb8ErWDd1Hj3O-IAQYI_IR2q-JEEwqcYC-rgJef1qdws_rHx_X7wFnPwQzjj4M2Hz3GXfJX7qMfZiSD9lbPM2bOCecXPZ5MsE6PEWcTOfN5GPA07lLZnv1BO31Zszu6W09RF_evvl8_K46-3CyPl6dVZY1aqocUx1vgXKlGDDTMyo6QQzvWis74A7atiFAnYRadtxAZ1VfN9Y5qEG2AupD9Hqnu53bjeusKz7NqLfJb0y60tF4_Xcn-HM9xEstGFWMLgIvbwVS_Da7POmNz9aNowkuzllTkE1xRQUr6It_0ItyiXKtG4pJxgSoe2owo9M-9LHstYuoXnFZYqop0ELBjrIp5pxcf2cZiF7C1btwdQlXL-FqWWae__nXu4nfaRaA7oBcWmFw6d7g_1V_AQAMr3k</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Liu, Peter H.</creator><creator>Shah, Richa B.</creator><creator>Li, Yuanyuan</creator><creator>Arora, Arshi</creator><creator>Ung, Peter Man-Un</creator><creator>Raman, Renuka</creator><creator>Gorbatenko, Andrej</creator><creator>Kozono, Shingo</creator><creator>Zhou, Xiao Zhen</creator><creator>Brechin, Vincent</creator><creator>Barbaro, John M.</creator><creator>Thompson, Ruth</creator><creator>White, Richard M.</creator><creator>Aguirre-Ghiso, Julio A.</creator><creator>Heymach, John V.</creator><creator>Lu, Kun Ping</creator><creator>Silva, Jose M.</creator><creator>Panageas, Katherine S.</creator><creator>Schlessinger, Avner</creator><creator>Maki, Robert G.</creator><creator>Skinner, Heath D.</creator><creator>de Stanchina, Elisa</creator><creator>Sidi, Samuel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4007-7814</orcidid><orcidid>https://orcid.org/0000-0002-6849-5252</orcidid><orcidid>https://orcid.org/0000-0003-1836-151X</orcidid><orcidid>https://orcid.org/0000-0001-9099-9169</orcidid><orcidid>https://orcid.org/0000-0001-7649-0673</orcidid><orcidid>https://orcid.org/0000-0001-5037-085X</orcidid></search><sort><creationdate>20190201</creationdate><title>An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy</title><author>Liu, Peter H. ; Shah, Richa B. ; Li, Yuanyuan ; Arora, Arshi ; Ung, Peter Man-Un ; Raman, Renuka ; Gorbatenko, Andrej ; Kozono, Shingo ; Zhou, Xiao Zhen ; Brechin, Vincent ; Barbaro, John M. ; Thompson, Ruth ; White, Richard M. ; Aguirre-Ghiso, Julio A. ; Heymach, John V. ; Lu, Kun Ping ; Silva, Jose M. ; Panageas, Katherine S. ; Schlessinger, Avner ; Maki, Robert G. ; Skinner, Heath D. ; de Stanchina, Elisa ; Sidi, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-e48d5b12588414af426d60a5dbc7d15e1bb9012e7137d5a1dc8f39cee1317b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/106</topic><topic>13/2</topic><topic>13/89</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>42/41</topic><topic>59</topic><topic>631/67</topic><topic>631/67/1059/485</topic><topic>631/67/1059/602</topic><topic>631/80/86/2366</topic><topic>64</topic><topic>64/116</topic><topic>64/60</topic><topic>82</topic><topic>96</topic><topic>96/109</topic><topic>96/95</topic><topic>Animals</topic><topic>Anthelmintic agents</topic><topic>Antiparasitic agents</topic><topic>Apoptosis</topic><topic>Benzimidazoles</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cancer treatment</topic><topic>Caspase</topic><topic>Caspase-2</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chemoradiotherapy</topic><topic>Cytokine receptors</topic><topic>Developmental Biology</topic><topic>Genetic aspects</topic><topic>HCT116 Cells</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inhibitors</topic><topic>Interleukin 1</topic><topic>Interleukin 1 receptors</topic><topic>Interleukin-1 Receptor-Associated Kinases - antagonists &amp; inhibitors</topic><topic>Interleukin-1 Receptor-Associated Kinases - genetics</topic><topic>Interleukin-1 Receptor-Associated Kinases - metabolism</topic><topic>Interleukins</topic><topic>Ionizing radiation</topic><topic>IRAK protein</topic><topic>Life Sciences</topic><topic>MCF-7 Cells</topic><topic>Medical schools</topic><topic>Methods</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>MyD88 protein</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - radiotherapy</topic><topic>NIMA-Interacting Peptidylprolyl Isomerase - antagonists &amp; inhibitors</topic><topic>NIMA-Interacting Peptidylprolyl Isomerase - genetics</topic><topic>NIMA-Interacting Peptidylprolyl Isomerase - metabolism</topic><topic>Oxfendazole</topic><topic>p53 Protein</topic><topic>Pathogenic microorganisms</topic><topic>Patient outcomes</topic><topic>Peptidylprolyl isomerase</topic><topic>Pin1 protein</topic><topic>Proteins</topic><topic>Radiation (Physics)</topic><topic>Radiation therapy</topic><topic>Radiation tolerance</topic><topic>Radiation Tolerance - drug effects</topic><topic>Radiation Tolerance - genetics</topic><topic>Radiosensitivity</topic><topic>Radiosensitizers</topic><topic>Radiotherapy</topic><topic>Signal Transduction</topic><topic>Stem Cells</topic><topic>Synergistic effect</topic><topic>Toll-like receptors</topic><topic>Toxicity</topic><topic>TRAF6 protein</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays - methods</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peter H.</creatorcontrib><creatorcontrib>Shah, Richa B.</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Arora, Arshi</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Raman, Renuka</creatorcontrib><creatorcontrib>Gorbatenko, Andrej</creatorcontrib><creatorcontrib>Kozono, Shingo</creatorcontrib><creatorcontrib>Zhou, Xiao Zhen</creatorcontrib><creatorcontrib>Brechin, Vincent</creatorcontrib><creatorcontrib>Barbaro, John M.</creatorcontrib><creatorcontrib>Thompson, Ruth</creatorcontrib><creatorcontrib>White, Richard M.</creatorcontrib><creatorcontrib>Aguirre-Ghiso, Julio A.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Lu, Kun Ping</creatorcontrib><creatorcontrib>Silva, Jose M.</creatorcontrib><creatorcontrib>Panageas, Katherine S.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Maki, Robert G.</creatorcontrib><creatorcontrib>Skinner, Heath D.</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Sidi, Samuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peter H.</au><au>Shah, Richa B.</au><au>Li, Yuanyuan</au><au>Arora, Arshi</au><au>Ung, Peter Man-Un</au><au>Raman, Renuka</au><au>Gorbatenko, Andrej</au><au>Kozono, Shingo</au><au>Zhou, Xiao Zhen</au><au>Brechin, Vincent</au><au>Barbaro, John M.</au><au>Thompson, Ruth</au><au>White, Richard M.</au><au>Aguirre-Ghiso, Julio A.</au><au>Heymach, John V.</au><au>Lu, Kun Ping</au><au>Silva, Jose M.</au><au>Panageas, Katherine S.</au><au>Schlessinger, Avner</au><au>Maki, Robert G.</au><au>Skinner, Heath D.</au><au>de Stanchina, Elisa</au><au>Sidi, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR–IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target. Performing a small-molecule screen, Liu et al. identify IRAK as a regulator of PIDDosome activity and tumour radioresistance, and demonstrate a synergistic effect of targeting IRAK1 and PIN1 in response to ionizing radiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30664786</pmid><doi>10.1038/s41556-018-0260-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4007-7814</orcidid><orcidid>https://orcid.org/0000-0002-6849-5252</orcidid><orcidid>https://orcid.org/0000-0003-1836-151X</orcidid><orcidid>https://orcid.org/0000-0001-9099-9169</orcidid><orcidid>https://orcid.org/0000-0001-7649-0673</orcidid><orcidid>https://orcid.org/0000-0001-5037-085X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2019-02, Vol.21 (2), p.203-213
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428421
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 13/106
13/2
13/89
14
14/1
14/19
42/41
59
631/67
631/67/1059/485
631/67/1059/602
631/80/86/2366
64
64/116
64/60
82
96
96/109
96/95
Animals
Anthelmintic agents
Antiparasitic agents
Apoptosis
Benzimidazoles
Biomedical and Life Sciences
Cancer
Cancer Research
Cancer treatment
Caspase
Caspase-2
Cell Biology
Cell Line, Tumor
Chemoradiotherapy
Cytokine receptors
Developmental Biology
Genetic aspects
HCT116 Cells
Health aspects
HEK293 Cells
HeLa Cells
Humans
Immune response
Immune system
Inhibitors
Interleukin 1
Interleukin 1 receptors
Interleukin-1 Receptor-Associated Kinases - antagonists & inhibitors
Interleukin-1 Receptor-Associated Kinases - genetics
Interleukin-1 Receptor-Associated Kinases - metabolism
Interleukins
Ionizing radiation
IRAK protein
Life Sciences
MCF-7 Cells
Medical schools
Methods
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Mutation
MyD88 protein
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - radiotherapy
NIMA-Interacting Peptidylprolyl Isomerase - antagonists & inhibitors
NIMA-Interacting Peptidylprolyl Isomerase - genetics
NIMA-Interacting Peptidylprolyl Isomerase - metabolism
Oxfendazole
p53 Protein
Pathogenic microorganisms
Patient outcomes
Peptidylprolyl isomerase
Pin1 protein
Proteins
Radiation (Physics)
Radiation therapy
Radiation tolerance
Radiation Tolerance - drug effects
Radiation Tolerance - genetics
Radiosensitivity
Radiosensitizers
Radiotherapy
Signal Transduction
Stem Cells
Synergistic effect
Toll-like receptors
Toxicity
TRAF6 protein
Tumor proteins
Tumor Suppressor Protein p53 - genetics
Tumors
Xenograft Model Antitumor Assays - methods
Zebrafish
title An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20IRAK1%E2%80%93PIN1%20signalling%20axis%20drives%20intrinsic%20tumour%20resistance%20to%20radiation%20therapy&rft.jtitle=Nature%20cell%20biology&rft.au=Liu,%20Peter%20H.&rft.date=2019-02-01&rft.volume=21&rft.issue=2&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-018-0260-7&rft_dat=%3Cgale_pubme%3EA572603212%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174744618&rft_id=info:pmid/30664786&rft_galeid=A572603212&rfr_iscdi=true