Protein-nucleic acid interactions of LINE-1 ORF1p
[Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA b...
Gespeichert in:
Veröffentlicht in: | Seminars in cell & developmental biology 2019-02, Vol.86, p.140-149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | |
container_start_page | 140 |
container_title | Seminars in cell & developmental biology |
container_volume | 86 |
creator | Naufer, M. Nabuan Furano, Anthony V. Williams, Mark C. |
description | [Display omitted]
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition. |
doi_str_mv | 10.1016/j.semcdb.2018.03.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952117304512</els_id><sourcerecordid>2020483759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa0KVCjtN0AoRy5JZ2zHG1-QEOKftIKqgrPlnUzAq2y82FmkfvtmtRTaS08z0rz3ZuYnxDFChYDm-7LKvKJ2UUnApgJVAdpP4hDBmlIZpfe2faNLW0s8EF9yXgKAttJ8FgfS1tZYsIcCf6Q4chjKYUM9Byo8hbYIw8jJ0xjikIvYFfPbu8sSi_ufV7j-KvY732f-9laPxOPV5cPFTTm_v769OJ-XpI0aS0ateWY8Kuw8oOq81HbhuxmRaW0DrFrZEVhSjdItarYSa0W-9hp0zV4dibNd7nqzWHFLPIzJ926dwsqnXy764P6dDOHZPcVXZ7RspMQp4PQtIMWXDefRrUIm7ns_cNxkJ0GCbtSstpNU76SUYs6Ju_c1CG5L2y3djrbb0nag3ER7sp38feK76Q_ejx94AvUaOLlMgQfiNiSm0bUx_H_Db1nLkYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020483759</pqid></control><display><type>article</type><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</creator><creatorcontrib>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</creatorcontrib><description>[Display omitted]
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2018.03.019</identifier><identifier>PMID: 29596909</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Binding Sites ; DNA - chemistry ; DNA - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Humans ; Kinetics ; Long Interspersed Nucleotide Elements - genetics ; Open Reading Frames - genetics</subject><ispartof>Seminars in cell & developmental biology, 2019-02, Vol.86, p.140-149</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</citedby><cites>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1084952117304512$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29596909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naufer, M. Nabuan</creatorcontrib><creatorcontrib>Furano, Anthony V.</creatorcontrib><creatorcontrib>Williams, Mark C.</creatorcontrib><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><title>Seminars in cell & developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>[Display omitted]
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Long Interspersed Nucleotide Elements - genetics</subject><subject>Open Reading Frames - genetics</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxa0KVCjtN0AoRy5JZ2zHG1-QEOKftIKqgrPlnUzAq2y82FmkfvtmtRTaS08z0rz3ZuYnxDFChYDm-7LKvKJ2UUnApgJVAdpP4hDBmlIZpfe2faNLW0s8EF9yXgKAttJ8FgfS1tZYsIcCf6Q4chjKYUM9Byo8hbYIw8jJ0xjikIvYFfPbu8sSi_ufV7j-KvY732f-9laPxOPV5cPFTTm_v769OJ-XpI0aS0ateWY8Kuw8oOq81HbhuxmRaW0DrFrZEVhSjdItarYSa0W-9hp0zV4dibNd7nqzWHFLPIzJ926dwsqnXy764P6dDOHZPcVXZ7RspMQp4PQtIMWXDefRrUIm7ns_cNxkJ0GCbtSstpNU76SUYs6Ju_c1CG5L2y3djrbb0nag3ER7sp38feK76Q_ejx94AvUaOLlMgQfiNiSm0bUx_H_Db1nLkYs</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Naufer, M. Nabuan</creator><creator>Furano, Anthony V.</creator><creator>Williams, Mark C.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><author>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Long Interspersed Nucleotide Elements - genetics</topic><topic>Open Reading Frames - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naufer, M. Nabuan</creatorcontrib><creatorcontrib>Furano, Anthony V.</creatorcontrib><creatorcontrib>Williams, Mark C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in cell & developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naufer, M. Nabuan</au><au>Furano, Anthony V.</au><au>Williams, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-nucleic acid interactions of LINE-1 ORF1p</atitle><jtitle>Seminars in cell & developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>86</volume><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>[Display omitted]
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29596909</pmid><doi>10.1016/j.semcdb.2018.03.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-9521 |
ispartof | Seminars in cell & developmental biology, 2019-02, Vol.86, p.140-149 |
issn | 1084-9521 1096-3634 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428221 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Binding Sites DNA - chemistry DNA - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Humans Kinetics Long Interspersed Nucleotide Elements - genetics Open Reading Frames - genetics |
title | Protein-nucleic acid interactions of LINE-1 ORF1p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-nucleic%20acid%20interactions%20of%20LINE-1%20ORF1p&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Naufer,%20M.%20Nabuan&rft.date=2019-02-01&rft.volume=86&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2018.03.019&rft_dat=%3Cproquest_pubme%3E2020483759%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020483759&rft_id=info:pmid/29596909&rft_els_id=S1084952117304512&rfr_iscdi=true |