Protein-nucleic acid interactions of LINE-1 ORF1p

[Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cell & developmental biology 2019-02, Vol.86, p.140-149
Hauptverfasser: Naufer, M. Nabuan, Furano, Anthony V., Williams, Mark C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 140
container_title Seminars in cell & developmental biology
container_volume 86
creator Naufer, M. Nabuan
Furano, Anthony V.
Williams, Mark C.
description [Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.
doi_str_mv 10.1016/j.semcdb.2018.03.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952117304512</els_id><sourcerecordid>2020483759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa0KVCjtN0AoRy5JZ2zHG1-QEOKftIKqgrPlnUzAq2y82FmkfvtmtRTaS08z0rz3ZuYnxDFChYDm-7LKvKJ2UUnApgJVAdpP4hDBmlIZpfe2faNLW0s8EF9yXgKAttJ8FgfS1tZYsIcCf6Q4chjKYUM9Byo8hbYIw8jJ0xjikIvYFfPbu8sSi_ufV7j-KvY732f-9laPxOPV5cPFTTm_v769OJ-XpI0aS0ateWY8Kuw8oOq81HbhuxmRaW0DrFrZEVhSjdItarYSa0W-9hp0zV4dibNd7nqzWHFLPIzJ926dwsqnXy764P6dDOHZPcVXZ7RspMQp4PQtIMWXDefRrUIm7ns_cNxkJ0GCbtSstpNU76SUYs6Ju_c1CG5L2y3djrbb0nag3ER7sp38feK76Q_ejx94AvUaOLlMgQfiNiSm0bUx_H_Db1nLkYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020483759</pqid></control><display><type>article</type><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</creator><creatorcontrib>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</creatorcontrib><description>[Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2018.03.019</identifier><identifier>PMID: 29596909</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Binding Sites ; DNA - chemistry ; DNA - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Humans ; Kinetics ; Long Interspersed Nucleotide Elements - genetics ; Open Reading Frames - genetics</subject><ispartof>Seminars in cell &amp; developmental biology, 2019-02, Vol.86, p.140-149</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</citedby><cites>FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1084952117304512$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29596909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naufer, M. Nabuan</creatorcontrib><creatorcontrib>Furano, Anthony V.</creatorcontrib><creatorcontrib>Williams, Mark C.</creatorcontrib><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><title>Seminars in cell &amp; developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>[Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Long Interspersed Nucleotide Elements - genetics</subject><subject>Open Reading Frames - genetics</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxa0KVCjtN0AoRy5JZ2zHG1-QEOKftIKqgrPlnUzAq2y82FmkfvtmtRTaS08z0rz3ZuYnxDFChYDm-7LKvKJ2UUnApgJVAdpP4hDBmlIZpfe2faNLW0s8EF9yXgKAttJ8FgfS1tZYsIcCf6Q4chjKYUM9Byo8hbYIw8jJ0xjikIvYFfPbu8sSi_ufV7j-KvY732f-9laPxOPV5cPFTTm_v769OJ-XpI0aS0ateWY8Kuw8oOq81HbhuxmRaW0DrFrZEVhSjdItarYSa0W-9hp0zV4dibNd7nqzWHFLPIzJ926dwsqnXy764P6dDOHZPcVXZ7RspMQp4PQtIMWXDefRrUIm7ns_cNxkJ0GCbtSstpNU76SUYs6Ju_c1CG5L2y3djrbb0nag3ER7sp38feK76Q_ejx94AvUaOLlMgQfiNiSm0bUx_H_Db1nLkYs</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Naufer, M. Nabuan</creator><creator>Furano, Anthony V.</creator><creator>Williams, Mark C.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Protein-nucleic acid interactions of LINE-1 ORF1p</title><author>Naufer, M. Nabuan ; Furano, Anthony V. ; Williams, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e144e76a131fa013fa249baf7cc6d980e3d2fc09c3834d14e92153ca5a4045ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Long Interspersed Nucleotide Elements - genetics</topic><topic>Open Reading Frames - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naufer, M. Nabuan</creatorcontrib><creatorcontrib>Furano, Anthony V.</creatorcontrib><creatorcontrib>Williams, Mark C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in cell &amp; developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naufer, M. Nabuan</au><au>Furano, Anthony V.</au><au>Williams, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-nucleic acid interactions of LINE-1 ORF1p</atitle><jtitle>Seminars in cell &amp; developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>86</volume><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>[Display omitted] Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29596909</pmid><doi>10.1016/j.semcdb.2018.03.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-9521
ispartof Seminars in cell & developmental biology, 2019-02, Vol.86, p.140-149
issn 1084-9521
1096-3634
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428221
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Binding Sites
DNA - chemistry
DNA - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Humans
Kinetics
Long Interspersed Nucleotide Elements - genetics
Open Reading Frames - genetics
title Protein-nucleic acid interactions of LINE-1 ORF1p
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-nucleic%20acid%20interactions%20of%20LINE-1%20ORF1p&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Naufer,%20M.%20Nabuan&rft.date=2019-02-01&rft.volume=86&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2018.03.019&rft_dat=%3Cproquest_pubme%3E2020483759%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020483759&rft_id=info:pmid/29596909&rft_els_id=S1084952117304512&rfr_iscdi=true