Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery

Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG- -PEO- -PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-03, Vol.12 (5), p.766
Hauptverfasser: Li, Yan, Song, Fangxiang, Cheng, Liang, Qian, Jin, Chen, Qianlin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 766
container_title Materials
container_volume 12
creator Li, Yan
Song, Fangxiang
Cheng, Liang
Qian, Jin
Chen, Qianlin
description Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG- -PEO- -PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer⁻Emmett⁻Teller (BET) method and the Barrett⁻Joyner⁻Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m²·g ) and pore volume (0.365 cm³·g ). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS⁻(NH)₃⁻COOH) was obtained via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS⁻(NH)₃⁻COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS⁻(NH)₃⁻COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS⁻(NH)₃⁻COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.
doi_str_mv 10.3390/ma12050766
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189561878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-9e48790d55026f911ab1091cffddb19387ab21633fc6830be17cf560c11a98a23</originalsourceid><addsrcrecordid>eNpVkU9LxDAQxYMouqgXP4DkKEI1adr8uQiy6iqsKKjnkKaTNdJt1qQV109vxVXXuczA_HgzvIfQASUnjClyOjc0JyURnG-gEVWKZ1QVxebavIP2U3ohQzFGZa620Q4jsii5ECNkr_rWdj60pvEfUOOpiTPI7kMEfAspLEIMfcIPvvHW4FtvY1iY2HnbQMIuRDwB5zvf-gqbtsYX4T3EvvLWt3gcamj8G8TlHtpypkmwv-q76Onq8nF8nU3vJjfj82lmmZBdpqCQQpG6LEnOnaLUVJQoap2r64oqJoWpcsoZc5ZLRiqgwrqSEzuQSpqc7aKzb91FX82httB20TR6Ef3cxKUOxuv_m9Y_61l407zIRcHIIHC0EojhtYfU6blPFprGtDDYoHMqVcmpFHJAj7_RwZGUIrjfM5Tor2D0XzADfLj-2C_6EwP7BGuqipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189561878</pqid></control><display><type>article</type><title>Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Li, Yan ; Song, Fangxiang ; Cheng, Liang ; Qian, Jin ; Chen, Qianlin</creator><creatorcontrib>Li, Yan ; Song, Fangxiang ; Cheng, Liang ; Qian, Jin ; Chen, Qianlin</creatorcontrib><description>Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG- -PEO- -PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer⁻Emmett⁻Teller (BET) method and the Barrett⁻Joyner⁻Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m²·g ) and pore volume (0.365 cm³·g ). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS⁻(NH)₃⁻COOH) was obtained via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS⁻(NH)₃⁻COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS⁻(NH)₃⁻COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS⁻(NH)₃⁻COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12050766</identifier><identifier>PMID: 30845677</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Materials, 2019-03, Vol.12 (5), p.766</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-9e48790d55026f911ab1091cffddb19387ab21633fc6830be17cf560c11a98a23</citedby><cites>FETCH-LOGICAL-c378t-9e48790d55026f911ab1091cffddb19387ab21633fc6830be17cf560c11a98a23</cites><orcidid>0000-0002-1670-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427430/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427430/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30845677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Song, Fangxiang</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Qian, Jin</creatorcontrib><creatorcontrib>Chen, Qianlin</creatorcontrib><title>Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG- -PEO- -PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer⁻Emmett⁻Teller (BET) method and the Barrett⁻Joyner⁻Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m²·g ) and pore volume (0.365 cm³·g ). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS⁻(NH)₃⁻COOH) was obtained via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS⁻(NH)₃⁻COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS⁻(NH)₃⁻COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS⁻(NH)₃⁻COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.</description><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkU9LxDAQxYMouqgXP4DkKEI1adr8uQiy6iqsKKjnkKaTNdJt1qQV109vxVXXuczA_HgzvIfQASUnjClyOjc0JyURnG-gEVWKZ1QVxebavIP2U3ohQzFGZa620Q4jsii5ECNkr_rWdj60pvEfUOOpiTPI7kMEfAspLEIMfcIPvvHW4FtvY1iY2HnbQMIuRDwB5zvf-gqbtsYX4T3EvvLWt3gcamj8G8TlHtpypkmwv-q76Onq8nF8nU3vJjfj82lmmZBdpqCQQpG6LEnOnaLUVJQoap2r64oqJoWpcsoZc5ZLRiqgwrqSEzuQSpqc7aKzb91FX82httB20TR6Ef3cxKUOxuv_m9Y_61l407zIRcHIIHC0EojhtYfU6blPFprGtDDYoHMqVcmpFHJAj7_RwZGUIrjfM5Tor2D0XzADfLj-2C_6EwP7BGuqipQ</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Li, Yan</creator><creator>Song, Fangxiang</creator><creator>Cheng, Liang</creator><creator>Qian, Jin</creator><creator>Chen, Qianlin</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1670-8623</orcidid></search><sort><creationdate>20190306</creationdate><title>Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery</title><author>Li, Yan ; Song, Fangxiang ; Cheng, Liang ; Qian, Jin ; Chen, Qianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-9e48790d55026f911ab1091cffddb19387ab21633fc6830be17cf560c11a98a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Song, Fangxiang</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Qian, Jin</creatorcontrib><creatorcontrib>Chen, Qianlin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yan</au><au>Song, Fangxiang</au><au>Cheng, Liang</au><au>Qian, Jin</au><au>Chen, Qianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-03-06</date><risdate>2019</risdate><volume>12</volume><issue>5</issue><spage>766</spage><pages>766-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG- -PEO- -PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer⁻Emmett⁻Teller (BET) method and the Barrett⁻Joyner⁻Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m²·g ) and pore volume (0.365 cm³·g ). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS⁻(NH)₃⁻COOH) was obtained via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS⁻(NH)₃⁻COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS⁻(NH)₃⁻COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS⁻(NH)₃⁻COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30845677</pmid><doi>10.3390/ma12050766</doi><orcidid>https://orcid.org/0000-0002-1670-8623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-03, Vol.12 (5), p.766
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427430
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
title Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalized%20Large-Pore%20Mesoporous%20Silica%20Microparticles%20for%20Gefitinib%20and%20Doxorubicin%20Codelivery&rft.jtitle=Materials&rft.au=Li,%20Yan&rft.date=2019-03-06&rft.volume=12&rft.issue=5&rft.spage=766&rft.pages=766-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12050766&rft_dat=%3Cproquest_pubme%3E2189561878%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189561878&rft_id=info:pmid/30845677&rfr_iscdi=true