Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability

Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-03, Vol.10 (4), p.271-271, Article 271
Hauptverfasser: Zhan, Zhiyan, Song, Lili, Zhang, Weiwei, Gu, Haihui, Cheng, Haizi, Zhang, Yingwen, Yang, Yi, Ji, Guangzhen, Feng, Haizhong, Cheng, Tao, Li, Yanxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 4
container_start_page 271
container_title Cell death & disease
container_volume 10
creator Zhan, Zhiyan
Song, Lili
Zhang, Weiwei
Gu, Haihui
Cheng, Haizi
Zhang, Yingwen
Yang, Yi
Ji, Guangzhen
Feng, Haizhong
Cheng, Tao
Li, Yanxin
description Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate, suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors. However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.
doi_str_mv 10.1038/s41419-019-1502-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6426969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195260991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-85ae7efe8b20218b49fda9bf5d66cdb8d827386229e8574cfd6d7a7d684a2293</originalsourceid><addsrcrecordid>eNp1kd9qHCEUxofS0oQ0D9CbIvSmN9Oqo47eFMLSfxBoILkXR4-7prO61ZmWfYi-c51umm4DEUQ53-98evia5iXBbwnu5LvCCCOqxXUTjmkrnzSnFDPSMinV06P7SXNeyi2uq-sw5eJ5c9JhqRgn-LT5dTEUiBZQ8sju7Rhi62AH0UGc0LcQTQEU4iYMYUoZ7WiPloPIWrQZqloQeB9sqCb7xSRcXa_QGiJkM4UU0c8wbdI8Vd7N9k_lCErbYKtSJjOEMUz7F80zb8YC53fnWXPz8cPN6nN7-fXTl9XFZWtZj6dWcgM9eJADxZTIgSnvjBo8d0JYN0gnad9JQakCyXtmvROuN70Tkpla7M6a9wfb3Txswdk6azaj3uWwNXmvkwn6fyWGjV6nH1owKpRYDN7cGeT0fYYy6W0oFsbRREhz0ZQoTgVWilT09QP0Ns051ukWivEes55Xihwom1MpGfz9ZwjWS9z6ELeuceslbi1rz6vjKe47_oZbAXoASpXiGvK_px93_Q09tLe0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194570475</pqid></control><display><type>article</type><title>Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Zhan, Zhiyan ; Song, Lili ; Zhang, Weiwei ; Gu, Haihui ; Cheng, Haizi ; Zhang, Yingwen ; Yang, Yi ; Ji, Guangzhen ; Feng, Haizhong ; Cheng, Tao ; Li, Yanxin</creator><creatorcontrib>Zhan, Zhiyan ; Song, Lili ; Zhang, Weiwei ; Gu, Haihui ; Cheng, Haizi ; Zhang, Yingwen ; Yang, Yi ; Ji, Guangzhen ; Feng, Haizhong ; Cheng, Tao ; Li, Yanxin</creatorcontrib><description>Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate, suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors. However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1502-8</identifier><identifier>PMID: 30894510</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/109 ; 13/2 ; 13/21 ; 13/31 ; 14/34 ; 14/35 ; 38/39 ; 38/77 ; 631/532/2064/2158 ; 631/532/2435 ; 631/80/82/23 ; Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell cycle ; Cell Division - genetics ; Cellular Reprogramming - genetics ; Chromosome Aberrations ; Clonal deletion ; Cyclin-dependent kinase ; Cyclin-dependent kinase 2 ; Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors ; Cyclin-dependent kinase 4 ; Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors ; Cyclin-Dependent Kinase Inhibitor p18 - deficiency ; Cyclin-Dependent Kinase Inhibitor p18 - genetics ; Cyclin-Dependent Kinase Inhibitor p18 - metabolism ; Cyclin-dependent kinase inhibitor p21 ; Cyclin-Dependent Kinase Inhibitor p21 - deficiency ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; Cyclin-dependent kinase inhibitor p27 ; Cyclin-Dependent Kinase Inhibitor p27 - deficiency ; Cyclin-Dependent Kinase Inhibitor p27 - genetics ; Cyclin-Dependent Kinase Inhibitor p27 - metabolism ; Cyclin-dependent kinases ; DNA damage ; Ectopic expression ; Efficiency ; Enzyme inhibitors ; Fibroblasts - metabolism ; Genomic instability ; Genomic Instability - genetics ; Immunology ; Induced Pluripotent Stem Cells - metabolism ; Kinases ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Pluripotency ; Stem cell transplantation ; Stem cells ; Transduction, Genetic</subject><ispartof>Cell death &amp; disease, 2019-03, Vol.10 (4), p.271-271, Article 271</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-85ae7efe8b20218b49fda9bf5d66cdb8d827386229e8574cfd6d7a7d684a2293</citedby><cites>FETCH-LOGICAL-c470t-85ae7efe8b20218b49fda9bf5d66cdb8d827386229e8574cfd6d7a7d684a2293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426969/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426969/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30894510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Zhiyan</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Gu, Haihui</creatorcontrib><creatorcontrib>Cheng, Haizi</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Ji, Guangzhen</creatorcontrib><creatorcontrib>Feng, Haizhong</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Li, Yanxin</creatorcontrib><title>Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate, suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors. However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.</description><subject>13/1</subject><subject>13/100</subject><subject>13/109</subject><subject>13/2</subject><subject>13/21</subject><subject>13/31</subject><subject>14/34</subject><subject>14/35</subject><subject>38/39</subject><subject>38/77</subject><subject>631/532/2064/2158</subject><subject>631/532/2435</subject><subject>631/80/82/23</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell cycle</subject><subject>Cell Division - genetics</subject><subject>Cellular Reprogramming - genetics</subject><subject>Chromosome Aberrations</subject><subject>Clonal deletion</subject><subject>Cyclin-dependent kinase</subject><subject>Cyclin-dependent kinase 2</subject><subject>Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors</subject><subject>Cyclin-dependent kinase 4</subject><subject>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinase Inhibitor p18 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p18 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p18 - metabolism</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>Cyclin-dependent kinase inhibitor p27</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>DNA damage</subject><subject>Ectopic expression</subject><subject>Efficiency</subject><subject>Enzyme inhibitors</subject><subject>Fibroblasts - metabolism</subject><subject>Genomic instability</subject><subject>Genomic Instability - genetics</subject><subject>Immunology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>Pluripotency</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transduction, Genetic</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kd9qHCEUxofS0oQ0D9CbIvSmN9Oqo47eFMLSfxBoILkXR4-7prO61ZmWfYi-c51umm4DEUQ53-98evia5iXBbwnu5LvCCCOqxXUTjmkrnzSnFDPSMinV06P7SXNeyi2uq-sw5eJ5c9JhqRgn-LT5dTEUiBZQ8sju7Rhi62AH0UGc0LcQTQEU4iYMYUoZ7WiPloPIWrQZqloQeB9sqCb7xSRcXa_QGiJkM4UU0c8wbdI8Vd7N9k_lCErbYKtSJjOEMUz7F80zb8YC53fnWXPz8cPN6nN7-fXTl9XFZWtZj6dWcgM9eJADxZTIgSnvjBo8d0JYN0gnad9JQakCyXtmvROuN70Tkpla7M6a9wfb3Txswdk6azaj3uWwNXmvkwn6fyWGjV6nH1owKpRYDN7cGeT0fYYy6W0oFsbRREhz0ZQoTgVWilT09QP0Ns051ukWivEes55Xihwom1MpGfz9ZwjWS9z6ELeuceslbi1rz6vjKe47_oZbAXoASpXiGvK_px93_Q09tLe0</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Zhan, Zhiyan</creator><creator>Song, Lili</creator><creator>Zhang, Weiwei</creator><creator>Gu, Haihui</creator><creator>Cheng, Haizi</creator><creator>Zhang, Yingwen</creator><creator>Yang, Yi</creator><creator>Ji, Guangzhen</creator><creator>Feng, Haizhong</creator><creator>Cheng, Tao</creator><creator>Li, Yanxin</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190320</creationdate><title>Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability</title><author>Zhan, Zhiyan ; Song, Lili ; Zhang, Weiwei ; Gu, Haihui ; Cheng, Haizi ; Zhang, Yingwen ; Yang, Yi ; Ji, Guangzhen ; Feng, Haizhong ; Cheng, Tao ; Li, Yanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-85ae7efe8b20218b49fda9bf5d66cdb8d827386229e8574cfd6d7a7d684a2293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/109</topic><topic>13/2</topic><topic>13/21</topic><topic>13/31</topic><topic>14/34</topic><topic>14/35</topic><topic>38/39</topic><topic>38/77</topic><topic>631/532/2064/2158</topic><topic>631/532/2435</topic><topic>631/80/82/23</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell cycle</topic><topic>Cell Division - genetics</topic><topic>Cellular Reprogramming - genetics</topic><topic>Chromosome Aberrations</topic><topic>Clonal deletion</topic><topic>Cyclin-dependent kinase</topic><topic>Cyclin-dependent kinase 2</topic><topic>Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors</topic><topic>Cyclin-dependent kinase 4</topic><topic>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinase Inhibitor p18 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p18 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p18 - metabolism</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>Cyclin-dependent kinase inhibitor p27</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>DNA damage</topic><topic>Ectopic expression</topic><topic>Efficiency</topic><topic>Enzyme inhibitors</topic><topic>Fibroblasts - metabolism</topic><topic>Genomic instability</topic><topic>Genomic Instability - genetics</topic><topic>Immunology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>Pluripotency</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Zhiyan</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Gu, Haihui</creatorcontrib><creatorcontrib>Cheng, Haizi</creatorcontrib><creatorcontrib>Zhang, Yingwen</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Ji, Guangzhen</creatorcontrib><creatorcontrib>Feng, Haizhong</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Li, Yanxin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Zhiyan</au><au>Song, Lili</au><au>Zhang, Weiwei</au><au>Gu, Haihui</au><au>Cheng, Haizi</au><au>Zhang, Yingwen</au><au>Yang, Yi</au><au>Ji, Guangzhen</au><au>Feng, Haizhong</au><au>Cheng, Tao</au><au>Li, Yanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>271</spage><epage>271</epage><pages>271-271</pages><artnum>271</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate, suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors. However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30894510</pmid><doi>10.1038/s41419-019-1502-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2019-03, Vol.10 (4), p.271-271, Article 271
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6426969
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/1
13/100
13/109
13/2
13/21
13/31
14/34
14/35
38/39
38/77
631/532/2064/2158
631/532/2435
631/80/82/23
Animals
Antibodies
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell cycle
Cell Division - genetics
Cellular Reprogramming - genetics
Chromosome Aberrations
Clonal deletion
Cyclin-dependent kinase
Cyclin-dependent kinase 2
Cyclin-Dependent Kinase 2 - antagonists & inhibitors
Cyclin-dependent kinase 4
Cyclin-Dependent Kinase 4 - antagonists & inhibitors
Cyclin-Dependent Kinase Inhibitor p18 - deficiency
Cyclin-Dependent Kinase Inhibitor p18 - genetics
Cyclin-Dependent Kinase Inhibitor p18 - metabolism
Cyclin-dependent kinase inhibitor p21
Cyclin-Dependent Kinase Inhibitor p21 - deficiency
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Cyclin-dependent kinase inhibitor p27
Cyclin-Dependent Kinase Inhibitor p27 - deficiency
Cyclin-Dependent Kinase Inhibitor p27 - genetics
Cyclin-Dependent Kinase Inhibitor p27 - metabolism
Cyclin-dependent kinases
DNA damage
Ectopic expression
Efficiency
Enzyme inhibitors
Fibroblasts - metabolism
Genomic instability
Genomic Instability - genetics
Immunology
Induced Pluripotent Stem Cells - metabolism
Kinases
Life Sciences
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Pluripotency
Stem cell transplantation
Stem cells
Transduction, Genetic
title Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20cyclin-dependent%20kinase%20inhibitor%20p27%20or%20p18%20increases%20efficiency%20of%20iPSC%20generation%20without%20induction%20of%20iPSC%20genomic%20instability&rft.jtitle=Cell%20death%20&%20disease&rft.au=Zhan,%20Zhiyan&rft.date=2019-03-20&rft.volume=10&rft.issue=4&rft.spage=271&rft.epage=271&rft.pages=271-271&rft.artnum=271&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1502-8&rft_dat=%3Cproquest_pubme%3E2195260991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194570475&rft_id=info:pmid/30894510&rfr_iscdi=true