Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation

Layered lithium transition‐metal oxide materials, e.g., Li(Ni1−x−yCoxMny)O2 (NCM) and Li(Ni1−x−yCoxAly)O2, are the most promising candidates for lithium‐ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1–1 µm), called secondary and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2019-03, Vol.6 (6), p.1800843-n/a
Hauptverfasser: Lee, Seung‐Yong, Park, Gyeong‐Su, Jung, Changhoon, Ko, Dong‐Su, Park, Seong‐Yong, Kim, Hee Goo, Hong, Seong‐Hyeon, Zhu, Yimei, Kim, Miyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page 1800843
container_title Advanced science
container_volume 6
creator Lee, Seung‐Yong
Park, Gyeong‐Su
Jung, Changhoon
Ko, Dong‐Su
Park, Seong‐Yong
Kim, Hee Goo
Hong, Seong‐Hyeon
Zhu, Yimei
Kim, Miyoung
description Layered lithium transition‐metal oxide materials, e.g., Li(Ni1−x−yCoxMny)O2 (NCM) and Li(Ni1−x−yCoxAly)O2, are the most promising candidates for lithium‐ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1–1 µm), called secondary and primary particles, respectively. The micrometer‐ to nanometer‐sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so‐called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low‐angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so‐called primary particle is renamed as primary‐like particle. More importantly, the low‐angle GBs between the smaller true primary particles cause the development of nanocracks within the primary‐like particles of Ni‐rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni‐rich layered cathodes. The crystal structure of primary particles in layered lithium transition‐metal oxide materials is investigated by transmission electron microscopy. The micrometer‐ to nanometer‐sized particles, the so‐called primary particles, are in fact polycrystalline secondary particles containing low‐angle and special grain boundaries. The low‐angle grain boundaries in the so‐called primary particles can cause nanocrack development after repetitive electrochemical cycles in lithium‐ion batteries.
doi_str_mv 10.1002/advs.201800843
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202199881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4897-8a19f5810a681529534b4e0623ae173b174fd8b637404714ef0882d044a5d0013</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEolXpliWyYMNmBv8lsTdIVctPpUGt6MDW8jg3M64Se2o7A7PjEXhGngRHKaPChpUt-bvH59xTFM8JnhOM6Rvd7OKcYiIwFpw9Ko4pkWLGBOePH9yPitMYbzHGpGQ1J-JpccSwZDUt-XGRPsPORpusW6PrYHsd9uhah2RNBxFZhxZ6DwEatLBpY4ceLYN2I-_drx8_P0HSHbr6bpsMa9eg5QZsQJf9VpuEvEM3KQwmDSFTF7AOutHj5LPiSau7CKf350nx5f275fnH2eLqw-X52WJmuJD1TGgi21IQrCtBSipLxlcccEWZBlKzFal524hVlVNhXhMOLRaCNphzXTY5Ljsp3k6622HVQ2PApexEbaecymur_n5xdqPWfqcqnpdT4izwchLwMVkVjU1gNsY7ByYpwiXFkmfo9f0vwd8NEJPqbTTQddqBH6KiFOcupBCjoVf_oLd-CC7vIFMVreualyJT84kywccYoD04JliNxauxeHUoPg-8eJjzgP-pOQNsAr7ZDvb_kVNnF19vpKzZb3JOuco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262777458</pqid></control><display><type>article</type><title>Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Lee, Seung‐Yong ; Park, Gyeong‐Su ; Jung, Changhoon ; Ko, Dong‐Su ; Park, Seong‐Yong ; Kim, Hee Goo ; Hong, Seong‐Hyeon ; Zhu, Yimei ; Kim, Miyoung</creator><creatorcontrib>Lee, Seung‐Yong ; Park, Gyeong‐Su ; Jung, Changhoon ; Ko, Dong‐Su ; Park, Seong‐Yong ; Kim, Hee Goo ; Hong, Seong‐Hyeon ; Zhu, Yimei ; Kim, Miyoung ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Layered lithium transition‐metal oxide materials, e.g., Li(Ni1−x−yCoxMny)O2 (NCM) and Li(Ni1−x−yCoxAly)O2, are the most promising candidates for lithium‐ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1–1 µm), called secondary and primary particles, respectively. The micrometer‐ to nanometer‐sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so‐called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low‐angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so‐called primary particle is renamed as primary‐like particle. More importantly, the low‐angle GBs between the smaller true primary particles cause the development of nanocracks within the primary‐like particles of Ni‐rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni‐rich layered cathodes. The crystal structure of primary particles in layered lithium transition‐metal oxide materials is investigated by transmission electron microscopy. The micrometer‐ to nanometer‐sized particles, the so‐called primary particles, are in fact polycrystalline secondary particles containing low‐angle and special grain boundaries. The low‐angle grain boundaries in the so‐called primary particles can cause nanocrack development after repetitive electrochemical cycles in lithium‐ion batteries.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201800843</identifier><identifier>PMID: 30937254</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Communication ; Communications ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrolytes ; Investigations ; ithium-ion battery ; layered lithium transition-metal oxide ; Lithium ; lithium‐ion batteries ; mechanical crack ; mechanical cracks ; Metal oxides ; primary particle ; primary particles ; Scanning electron microscopy ; Single crystals ; Sintering ; Transmission electron microscopy</subject><ispartof>Advanced science, 2019-03, Vol.6 (6), p.1800843-n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4897-8a19f5810a681529534b4e0623ae173b174fd8b637404714ef0882d044a5d0013</citedby><cites>FETCH-LOGICAL-c4897-8a19f5810a681529534b4e0623ae173b174fd8b637404714ef0882d044a5d0013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425450/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425450/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1492094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seung‐Yong</creatorcontrib><creatorcontrib>Park, Gyeong‐Su</creatorcontrib><creatorcontrib>Jung, Changhoon</creatorcontrib><creatorcontrib>Ko, Dong‐Su</creatorcontrib><creatorcontrib>Park, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Hee Goo</creatorcontrib><creatorcontrib>Hong, Seong‐Hyeon</creatorcontrib><creatorcontrib>Zhu, Yimei</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Layered lithium transition‐metal oxide materials, e.g., Li(Ni1−x−yCoxMny)O2 (NCM) and Li(Ni1−x−yCoxAly)O2, are the most promising candidates for lithium‐ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1–1 µm), called secondary and primary particles, respectively. The micrometer‐ to nanometer‐sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so‐called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low‐angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so‐called primary particle is renamed as primary‐like particle. More importantly, the low‐angle GBs between the smaller true primary particles cause the development of nanocracks within the primary‐like particles of Ni‐rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni‐rich layered cathodes. The crystal structure of primary particles in layered lithium transition‐metal oxide materials is investigated by transmission electron microscopy. The micrometer‐ to nanometer‐sized particles, the so‐called primary particles, are in fact polycrystalline secondary particles containing low‐angle and special grain boundaries. The low‐angle grain boundaries in the so‐called primary particles can cause nanocrack development after repetitive electrochemical cycles in lithium‐ion batteries.</description><subject>Communication</subject><subject>Communications</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrolytes</subject><subject>Investigations</subject><subject>ithium-ion battery</subject><subject>layered lithium transition-metal oxide</subject><subject>Lithium</subject><subject>lithium‐ion batteries</subject><subject>mechanical crack</subject><subject>mechanical cracks</subject><subject>Metal oxides</subject><subject>primary particle</subject><subject>primary particles</subject><subject>Scanning electron microscopy</subject><subject>Single crystals</subject><subject>Sintering</subject><subject>Transmission electron microscopy</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1u1DAUhSMEolXpliWyYMNmBv8lsTdIVctPpUGt6MDW8jg3M64Se2o7A7PjEXhGngRHKaPChpUt-bvH59xTFM8JnhOM6Rvd7OKcYiIwFpw9Ko4pkWLGBOePH9yPitMYbzHGpGQ1J-JpccSwZDUt-XGRPsPORpusW6PrYHsd9uhah2RNBxFZhxZ6DwEatLBpY4ceLYN2I-_drx8_P0HSHbr6bpsMa9eg5QZsQJf9VpuEvEM3KQwmDSFTF7AOutHj5LPiSau7CKf350nx5f275fnH2eLqw-X52WJmuJD1TGgi21IQrCtBSipLxlcccEWZBlKzFal524hVlVNhXhMOLRaCNphzXTY5Ljsp3k6622HVQ2PApexEbaecymur_n5xdqPWfqcqnpdT4izwchLwMVkVjU1gNsY7ByYpwiXFkmfo9f0vwd8NEJPqbTTQddqBH6KiFOcupBCjoVf_oLd-CC7vIFMVreualyJT84kywccYoD04JliNxauxeHUoPg-8eJjzgP-pOQNsAr7ZDvb_kVNnF19vpKzZb3JOuco</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Lee, Seung‐Yong</creator><creator>Park, Gyeong‐Su</creator><creator>Jung, Changhoon</creator><creator>Ko, Dong‐Su</creator><creator>Park, Seong‐Yong</creator><creator>Kim, Hee Goo</creator><creator>Hong, Seong‐Hyeon</creator><creator>Zhu, Yimei</creator><creator>Kim, Miyoung</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20190320</creationdate><title>Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation</title><author>Lee, Seung‐Yong ; Park, Gyeong‐Su ; Jung, Changhoon ; Ko, Dong‐Su ; Park, Seong‐Yong ; Kim, Hee Goo ; Hong, Seong‐Hyeon ; Zhu, Yimei ; Kim, Miyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4897-8a19f5810a681529534b4e0623ae173b174fd8b637404714ef0882d044a5d0013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Communication</topic><topic>Communications</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrolytes</topic><topic>Investigations</topic><topic>ithium-ion battery</topic><topic>layered lithium transition-metal oxide</topic><topic>Lithium</topic><topic>lithium‐ion batteries</topic><topic>mechanical crack</topic><topic>mechanical cracks</topic><topic>Metal oxides</topic><topic>primary particle</topic><topic>primary particles</topic><topic>Scanning electron microscopy</topic><topic>Single crystals</topic><topic>Sintering</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung‐Yong</creatorcontrib><creatorcontrib>Park, Gyeong‐Su</creatorcontrib><creatorcontrib>Jung, Changhoon</creatorcontrib><creatorcontrib>Ko, Dong‐Su</creatorcontrib><creatorcontrib>Park, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Hee Goo</creatorcontrib><creatorcontrib>Hong, Seong‐Hyeon</creatorcontrib><creatorcontrib>Zhu, Yimei</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung‐Yong</au><au>Park, Gyeong‐Su</au><au>Jung, Changhoon</au><au>Ko, Dong‐Su</au><au>Park, Seong‐Yong</au><au>Kim, Hee Goo</au><au>Hong, Seong‐Hyeon</au><au>Zhu, Yimei</au><au>Kim, Miyoung</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>6</volume><issue>6</issue><spage>1800843</spage><epage>n/a</epage><pages>1800843-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Layered lithium transition‐metal oxide materials, e.g., Li(Ni1−x−yCoxMny)O2 (NCM) and Li(Ni1−x−yCoxAly)O2, are the most promising candidates for lithium‐ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1–1 µm), called secondary and primary particles, respectively. The micrometer‐ to nanometer‐sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so‐called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low‐angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so‐called primary particle is renamed as primary‐like particle. More importantly, the low‐angle GBs between the smaller true primary particles cause the development of nanocracks within the primary‐like particles of Ni‐rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni‐rich layered cathodes. The crystal structure of primary particles in layered lithium transition‐metal oxide materials is investigated by transmission electron microscopy. The micrometer‐ to nanometer‐sized particles, the so‐called primary particles, are in fact polycrystalline secondary particles containing low‐angle and special grain boundaries. The low‐angle grain boundaries in the so‐called primary particles can cause nanocrack development after repetitive electrochemical cycles in lithium‐ion batteries.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30937254</pmid><doi>10.1002/advs.201800843</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2019-03, Vol.6 (6), p.1800843-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425450
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Communication
Communications
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electrolytes
Investigations
ithium-ion battery
layered lithium transition-metal oxide
Lithium
lithium‐ion batteries
mechanical crack
mechanical cracks
Metal oxides
primary particle
primary particles
Scanning electron microscopy
Single crystals
Sintering
Transmission electron microscopy
title Revisiting Primary Particles in Layered Lithium Transition‐Metal Oxides and Their Impact on Structural Degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Primary%20Particles%20in%20Layered%20Lithium%20Transition%E2%80%90Metal%20Oxides%20and%20Their%20Impact%20on%20Structural%20Degradation&rft.jtitle=Advanced%20science&rft.au=Lee,%20Seung%E2%80%90Yong&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-03-20&rft.volume=6&rft.issue=6&rft.spage=1800843&rft.epage=n/a&rft.pages=1800843-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201800843&rft_dat=%3Cproquest_pubme%3E2202199881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262777458&rft_id=info:pmid/30937254&rfr_iscdi=true