Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs

Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded ol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.4811-4811, Article 4811
Hauptverfasser: Okamoto, Sachiko, Amaishi, Yasunori, Maki, Izumi, Enoki, Tatsuji, Mineno, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded oligo DNA nucleotides (ssODNs), we have investigated optimal design of ssODNs in terms of the blocking mutation, orientation, size, and length of homology arms to explore the optimal parameters of ssODN design using reporter systems for the detection of single-base substitutions. We have also investigated the difference in knock-in efficiency among the delivery forms and methods of Cas9 and sgRNA. The knock-in efficiencies for optimized ssODNs were much higher than those for ssODNs with no blocking mutation. We have also demonstrated that Cas9 protein/sgRNA ribonucleoprotein complexes (Cas9-RNPs) can dramatically reduce the re-cutting of the edited sites.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-41121-4