Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches

According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.4718, Article 4718
Hauptverfasser: Siwe-Noundou, Xavier, Musyoka, Thommas M., Moses, Vuyani, Ndinteh, Derek T., Mnkandhla, Dumisani, Hoppe, Heinrich, Tastan Bishop, Özlem, Krause, Rui W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4718
container_title Scientific reports
container_volume 9
creator Siwe-Noundou, Xavier
Musyoka, Thommas M.
Moses, Vuyani
Ndinteh, Derek T.
Mnkandhla, Dumisani
Hoppe, Heinrich
Tastan Bishop, Özlem
Krause, Rui W. M.
description According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia . Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC 50  = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.
doi_str_mv 10.1038/s41598-019-41403-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193649900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</originalsourceid><addsrcrecordid>eNp9UclKBDEQDaKoqD_gQQKeo9m67VyEQdxA8KJeQyZd3RPpSdokI87fm3FcL9alqnhLFTyEDhk9YVQ0p0mySjWEMkUkk1SQtw20y6msCBecb_6ad9BBSs-0VMWVZGob7QjaNLUQzS4KE58dubl9Igw7n6GPJgEeQwZvlzh0eA55thx6MwwmA-5imOPJYGchejDYhti6LgzO4EVyvi8W-NXlGLDx7WpJbnC2bOMYg7EzSPtoqzNDgoPPvocery4fLm7I3f317cXkjtiKsUymQlEuuRIMapBKNO2UAgUGUEEn-FndVIIbw1tZ1dPWsI7J1toGKglQtFbsofO177iYzqG14HM0gx6jm5u41ME4_Rfxbqb78KpryQVjqhgcfxrE8LKAlPVzWERffta8wLVUitLC4muWjSGlCN33BUb1Kie9zkmXnPRHTvqtiI5-__Yt-UqlEMSakArke4g_t_-xfQe4kKC5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193649900</pqid></control><display><type>article</type><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</creator><creatorcontrib>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</creatorcontrib><description>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia . Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC 50  = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41403-x</identifier><identifier>PMID: 30886338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 140/131 ; 631/154/309/606 ; 631/154/555 ; Acquired immune deficiency syndrome ; Acquired Immunodeficiency Syndrome - drug therapy ; Acquired Immunodeficiency Syndrome - virology ; AIDS ; Alchornea ; Antiviral agents ; Bark ; Bioactive compounds ; Cytotoxicity ; Drug development ; Drug Evaluation, Preclinical ; Euphorbiaceae - chemistry ; Gallic Acid - analogs &amp; derivatives ; Gallic Acid - chemistry ; Gallic Acid - isolation &amp; purification ; Gallic Acid - pharmacology ; Gallic Acid - therapeutic use ; HeLa Cells ; HIV ; HIV Integrase - metabolism ; HIV Integrase - ultrastructure ; HIV Integrase Inhibitors - chemistry ; HIV Integrase Inhibitors - isolation &amp; purification ; HIV Integrase Inhibitors - pharmacology ; HIV Integrase Inhibitors - therapeutic use ; HIV-1 - drug effects ; HIV-1 - enzymology ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Inhibitory Concentration 50 ; Integrase ; Mode of action ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Molecular modelling ; multidisciplinary ; Plant Bark - chemistry ; Plant Stems - chemistry ; Protein Domains ; Public health ; Recombinant Proteins ; Science ; Science (multidisciplinary) ; Toxicity Tests</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.4718, Article 4718</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</citedby><cites>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</cites><orcidid>0000-0001-6861-7849 ; 0000-0002-8667-8351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423119/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siwe-Noundou, Xavier</creatorcontrib><creatorcontrib>Musyoka, Thommas M.</creatorcontrib><creatorcontrib>Moses, Vuyani</creatorcontrib><creatorcontrib>Ndinteh, Derek T.</creatorcontrib><creatorcontrib>Mnkandhla, Dumisani</creatorcontrib><creatorcontrib>Hoppe, Heinrich</creatorcontrib><creatorcontrib>Tastan Bishop, Özlem</creatorcontrib><creatorcontrib>Krause, Rui W. M.</creatorcontrib><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia . Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC 50  = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</description><subject>14/34</subject><subject>140/131</subject><subject>631/154/309/606</subject><subject>631/154/555</subject><subject>Acquired immune deficiency syndrome</subject><subject>Acquired Immunodeficiency Syndrome - drug therapy</subject><subject>Acquired Immunodeficiency Syndrome - virology</subject><subject>AIDS</subject><subject>Alchornea</subject><subject>Antiviral agents</subject><subject>Bark</subject><subject>Bioactive compounds</subject><subject>Cytotoxicity</subject><subject>Drug development</subject><subject>Drug Evaluation, Preclinical</subject><subject>Euphorbiaceae - chemistry</subject><subject>Gallic Acid - analogs &amp; derivatives</subject><subject>Gallic Acid - chemistry</subject><subject>Gallic Acid - isolation &amp; purification</subject><subject>Gallic Acid - pharmacology</subject><subject>Gallic Acid - therapeutic use</subject><subject>HeLa Cells</subject><subject>HIV</subject><subject>HIV Integrase - metabolism</subject><subject>HIV Integrase - ultrastructure</subject><subject>HIV Integrase Inhibitors - chemistry</subject><subject>HIV Integrase Inhibitors - isolation &amp; purification</subject><subject>HIV Integrase Inhibitors - pharmacology</subject><subject>HIV Integrase Inhibitors - therapeutic use</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Integrase</subject><subject>Mode of action</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Plant Bark - chemistry</subject><subject>Plant Stems - chemistry</subject><subject>Protein Domains</subject><subject>Public health</subject><subject>Recombinant Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Toxicity Tests</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UclKBDEQDaKoqD_gQQKeo9m67VyEQdxA8KJeQyZd3RPpSdokI87fm3FcL9alqnhLFTyEDhk9YVQ0p0mySjWEMkUkk1SQtw20y6msCBecb_6ad9BBSs-0VMWVZGob7QjaNLUQzS4KE58dubl9Igw7n6GPJgEeQwZvlzh0eA55thx6MwwmA-5imOPJYGchejDYhti6LgzO4EVyvi8W-NXlGLDx7WpJbnC2bOMYg7EzSPtoqzNDgoPPvocery4fLm7I3f317cXkjtiKsUymQlEuuRIMapBKNO2UAgUGUEEn-FndVIIbw1tZ1dPWsI7J1toGKglQtFbsofO177iYzqG14HM0gx6jm5u41ME4_Rfxbqb78KpryQVjqhgcfxrE8LKAlPVzWERffta8wLVUitLC4muWjSGlCN33BUb1Kie9zkmXnPRHTvqtiI5-__Yt-UqlEMSakArke4g_t_-xfQe4kKC5</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Siwe-Noundou, Xavier</creator><creator>Musyoka, Thommas M.</creator><creator>Moses, Vuyani</creator><creator>Ndinteh, Derek T.</creator><creator>Mnkandhla, Dumisani</creator><creator>Hoppe, Heinrich</creator><creator>Tastan Bishop, Özlem</creator><creator>Krause, Rui W. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6861-7849</orcidid><orcidid>https://orcid.org/0000-0002-8667-8351</orcidid></search><sort><creationdate>20190318</creationdate><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><author>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/34</topic><topic>140/131</topic><topic>631/154/309/606</topic><topic>631/154/555</topic><topic>Acquired immune deficiency syndrome</topic><topic>Acquired Immunodeficiency Syndrome - drug therapy</topic><topic>Acquired Immunodeficiency Syndrome - virology</topic><topic>AIDS</topic><topic>Alchornea</topic><topic>Antiviral agents</topic><topic>Bark</topic><topic>Bioactive compounds</topic><topic>Cytotoxicity</topic><topic>Drug development</topic><topic>Drug Evaluation, Preclinical</topic><topic>Euphorbiaceae - chemistry</topic><topic>Gallic Acid - analogs &amp; derivatives</topic><topic>Gallic Acid - chemistry</topic><topic>Gallic Acid - isolation &amp; purification</topic><topic>Gallic Acid - pharmacology</topic><topic>Gallic Acid - therapeutic use</topic><topic>HeLa Cells</topic><topic>HIV</topic><topic>HIV Integrase - metabolism</topic><topic>HIV Integrase - ultrastructure</topic><topic>HIV Integrase Inhibitors - chemistry</topic><topic>HIV Integrase Inhibitors - isolation &amp; purification</topic><topic>HIV Integrase Inhibitors - pharmacology</topic><topic>HIV Integrase Inhibitors - therapeutic use</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Integrase</topic><topic>Mode of action</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Plant Bark - chemistry</topic><topic>Plant Stems - chemistry</topic><topic>Protein Domains</topic><topic>Public health</topic><topic>Recombinant Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Toxicity Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siwe-Noundou, Xavier</creatorcontrib><creatorcontrib>Musyoka, Thommas M.</creatorcontrib><creatorcontrib>Moses, Vuyani</creatorcontrib><creatorcontrib>Ndinteh, Derek T.</creatorcontrib><creatorcontrib>Mnkandhla, Dumisani</creatorcontrib><creatorcontrib>Hoppe, Heinrich</creatorcontrib><creatorcontrib>Tastan Bishop, Özlem</creatorcontrib><creatorcontrib>Krause, Rui W. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siwe-Noundou, Xavier</au><au>Musyoka, Thommas M.</au><au>Moses, Vuyani</au><au>Ndinteh, Derek T.</au><au>Mnkandhla, Dumisani</au><au>Hoppe, Heinrich</au><au>Tastan Bishop, Özlem</au><au>Krause, Rui W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-18</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>4718</spage><pages>4718-</pages><artnum>4718</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia . Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC 50  = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30886338</pmid><doi>10.1038/s41598-019-41403-x</doi><orcidid>https://orcid.org/0000-0001-6861-7849</orcidid><orcidid>https://orcid.org/0000-0002-8667-8351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-03, Vol.9 (1), p.4718, Article 4718
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423119
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 14/34
140/131
631/154/309/606
631/154/555
Acquired immune deficiency syndrome
Acquired Immunodeficiency Syndrome - drug therapy
Acquired Immunodeficiency Syndrome - virology
AIDS
Alchornea
Antiviral agents
Bark
Bioactive compounds
Cytotoxicity
Drug development
Drug Evaluation, Preclinical
Euphorbiaceae - chemistry
Gallic Acid - analogs & derivatives
Gallic Acid - chemistry
Gallic Acid - isolation & purification
Gallic Acid - pharmacology
Gallic Acid - therapeutic use
HeLa Cells
HIV
HIV Integrase - metabolism
HIV Integrase - ultrastructure
HIV Integrase Inhibitors - chemistry
HIV Integrase Inhibitors - isolation & purification
HIV Integrase Inhibitors - pharmacology
HIV Integrase Inhibitors - therapeutic use
HIV-1 - drug effects
HIV-1 - enzymology
Human immunodeficiency virus
Humanities and Social Sciences
Humans
Inhibitory Concentration 50
Integrase
Mode of action
Molecular Docking Simulation
Molecular Dynamics Simulation
Molecular modelling
multidisciplinary
Plant Bark - chemistry
Plant Stems - chemistry
Protein Domains
Public health
Recombinant Proteins
Science
Science (multidisciplinary)
Toxicity Tests
title Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-HIV-1%20integrase%20potency%20of%20methylgallate%20from%20Alchornea%20cordifolia%20using%20in%20vitro%20and%20in%20silico%20approaches&rft.jtitle=Scientific%20reports&rft.au=Siwe-Noundou,%20Xavier&rft.date=2019-03-18&rft.volume=9&rft.issue=1&rft.spage=4718&rft.pages=4718-&rft.artnum=4718&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41403-x&rft_dat=%3Cproquest_pubme%3E2193649900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193649900&rft_id=info:pmid/30886338&rfr_iscdi=true