Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches
According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-03, Vol.9 (1), p.4718, Article 4718 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 4718 |
container_title | Scientific reports |
container_volume | 9 |
creator | Siwe-Noundou, Xavier Musyoka, Thommas M. Moses, Vuyani Ndinteh, Derek T. Mnkandhla, Dumisani Hoppe, Heinrich Tastan Bishop, Özlem Krause, Rui W. M. |
description | According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from
Alchornea cordifolia
. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC
50
= 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the
in vitro
and
in silico
results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in
A. cordifolia
stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors. |
doi_str_mv | 10.1038/s41598-019-41403-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193649900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</originalsourceid><addsrcrecordid>eNp9UclKBDEQDaKoqD_gQQKeo9m67VyEQdxA8KJeQyZd3RPpSdokI87fm3FcL9alqnhLFTyEDhk9YVQ0p0mySjWEMkUkk1SQtw20y6msCBecb_6ad9BBSs-0VMWVZGob7QjaNLUQzS4KE58dubl9Igw7n6GPJgEeQwZvlzh0eA55thx6MwwmA-5imOPJYGchejDYhti6LgzO4EVyvi8W-NXlGLDx7WpJbnC2bOMYg7EzSPtoqzNDgoPPvocery4fLm7I3f317cXkjtiKsUymQlEuuRIMapBKNO2UAgUGUEEn-FndVIIbw1tZ1dPWsI7J1toGKglQtFbsofO177iYzqG14HM0gx6jm5u41ME4_Rfxbqb78KpryQVjqhgcfxrE8LKAlPVzWERffta8wLVUitLC4muWjSGlCN33BUb1Kie9zkmXnPRHTvqtiI5-__Yt-UqlEMSakArke4g_t_-xfQe4kKC5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193649900</pqid></control><display><type>article</type><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</creator><creatorcontrib>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</creatorcontrib><description>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from
Alchornea cordifolia
. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC
50
= 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the
in vitro
and
in silico
results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in
A. cordifolia
stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41403-x</identifier><identifier>PMID: 30886338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 140/131 ; 631/154/309/606 ; 631/154/555 ; Acquired immune deficiency syndrome ; Acquired Immunodeficiency Syndrome - drug therapy ; Acquired Immunodeficiency Syndrome - virology ; AIDS ; Alchornea ; Antiviral agents ; Bark ; Bioactive compounds ; Cytotoxicity ; Drug development ; Drug Evaluation, Preclinical ; Euphorbiaceae - chemistry ; Gallic Acid - analogs & derivatives ; Gallic Acid - chemistry ; Gallic Acid - isolation & purification ; Gallic Acid - pharmacology ; Gallic Acid - therapeutic use ; HeLa Cells ; HIV ; HIV Integrase - metabolism ; HIV Integrase - ultrastructure ; HIV Integrase Inhibitors - chemistry ; HIV Integrase Inhibitors - isolation & purification ; HIV Integrase Inhibitors - pharmacology ; HIV Integrase Inhibitors - therapeutic use ; HIV-1 - drug effects ; HIV-1 - enzymology ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Inhibitory Concentration 50 ; Integrase ; Mode of action ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Molecular modelling ; multidisciplinary ; Plant Bark - chemistry ; Plant Stems - chemistry ; Protein Domains ; Public health ; Recombinant Proteins ; Science ; Science (multidisciplinary) ; Toxicity Tests</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.4718, Article 4718</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</citedby><cites>FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</cites><orcidid>0000-0001-6861-7849 ; 0000-0002-8667-8351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423119/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siwe-Noundou, Xavier</creatorcontrib><creatorcontrib>Musyoka, Thommas M.</creatorcontrib><creatorcontrib>Moses, Vuyani</creatorcontrib><creatorcontrib>Ndinteh, Derek T.</creatorcontrib><creatorcontrib>Mnkandhla, Dumisani</creatorcontrib><creatorcontrib>Hoppe, Heinrich</creatorcontrib><creatorcontrib>Tastan Bishop, Özlem</creatorcontrib><creatorcontrib>Krause, Rui W. M.</creatorcontrib><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from
Alchornea cordifolia
. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC
50
= 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the
in vitro
and
in silico
results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in
A. cordifolia
stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</description><subject>14/34</subject><subject>140/131</subject><subject>631/154/309/606</subject><subject>631/154/555</subject><subject>Acquired immune deficiency syndrome</subject><subject>Acquired Immunodeficiency Syndrome - drug therapy</subject><subject>Acquired Immunodeficiency Syndrome - virology</subject><subject>AIDS</subject><subject>Alchornea</subject><subject>Antiviral agents</subject><subject>Bark</subject><subject>Bioactive compounds</subject><subject>Cytotoxicity</subject><subject>Drug development</subject><subject>Drug Evaluation, Preclinical</subject><subject>Euphorbiaceae - chemistry</subject><subject>Gallic Acid - analogs & derivatives</subject><subject>Gallic Acid - chemistry</subject><subject>Gallic Acid - isolation & purification</subject><subject>Gallic Acid - pharmacology</subject><subject>Gallic Acid - therapeutic use</subject><subject>HeLa Cells</subject><subject>HIV</subject><subject>HIV Integrase - metabolism</subject><subject>HIV Integrase - ultrastructure</subject><subject>HIV Integrase Inhibitors - chemistry</subject><subject>HIV Integrase Inhibitors - isolation & purification</subject><subject>HIV Integrase Inhibitors - pharmacology</subject><subject>HIV Integrase Inhibitors - therapeutic use</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Integrase</subject><subject>Mode of action</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Plant Bark - chemistry</subject><subject>Plant Stems - chemistry</subject><subject>Protein Domains</subject><subject>Public health</subject><subject>Recombinant Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Toxicity Tests</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UclKBDEQDaKoqD_gQQKeo9m67VyEQdxA8KJeQyZd3RPpSdokI87fm3FcL9alqnhLFTyEDhk9YVQ0p0mySjWEMkUkk1SQtw20y6msCBecb_6ad9BBSs-0VMWVZGob7QjaNLUQzS4KE58dubl9Igw7n6GPJgEeQwZvlzh0eA55thx6MwwmA-5imOPJYGchejDYhti6LgzO4EVyvi8W-NXlGLDx7WpJbnC2bOMYg7EzSPtoqzNDgoPPvocery4fLm7I3f317cXkjtiKsUymQlEuuRIMapBKNO2UAgUGUEEn-FndVIIbw1tZ1dPWsI7J1toGKglQtFbsofO177iYzqG14HM0gx6jm5u41ME4_Rfxbqb78KpryQVjqhgcfxrE8LKAlPVzWERffta8wLVUitLC4muWjSGlCN33BUb1Kie9zkmXnPRHTvqtiI5-__Yt-UqlEMSakArke4g_t_-xfQe4kKC5</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Siwe-Noundou, Xavier</creator><creator>Musyoka, Thommas M.</creator><creator>Moses, Vuyani</creator><creator>Ndinteh, Derek T.</creator><creator>Mnkandhla, Dumisani</creator><creator>Hoppe, Heinrich</creator><creator>Tastan Bishop, Özlem</creator><creator>Krause, Rui W. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6861-7849</orcidid><orcidid>https://orcid.org/0000-0002-8667-8351</orcidid></search><sort><creationdate>20190318</creationdate><title>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</title><author>Siwe-Noundou, Xavier ; Musyoka, Thommas M. ; Moses, Vuyani ; Ndinteh, Derek T. ; Mnkandhla, Dumisani ; Hoppe, Heinrich ; Tastan Bishop, Özlem ; Krause, Rui W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b390242931e6e4938db0e0e1ee5ef32768532aa2d456bda1f14dcc8e54eeb39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/34</topic><topic>140/131</topic><topic>631/154/309/606</topic><topic>631/154/555</topic><topic>Acquired immune deficiency syndrome</topic><topic>Acquired Immunodeficiency Syndrome - drug therapy</topic><topic>Acquired Immunodeficiency Syndrome - virology</topic><topic>AIDS</topic><topic>Alchornea</topic><topic>Antiviral agents</topic><topic>Bark</topic><topic>Bioactive compounds</topic><topic>Cytotoxicity</topic><topic>Drug development</topic><topic>Drug Evaluation, Preclinical</topic><topic>Euphorbiaceae - chemistry</topic><topic>Gallic Acid - analogs & derivatives</topic><topic>Gallic Acid - chemistry</topic><topic>Gallic Acid - isolation & purification</topic><topic>Gallic Acid - pharmacology</topic><topic>Gallic Acid - therapeutic use</topic><topic>HeLa Cells</topic><topic>HIV</topic><topic>HIV Integrase - metabolism</topic><topic>HIV Integrase - ultrastructure</topic><topic>HIV Integrase Inhibitors - chemistry</topic><topic>HIV Integrase Inhibitors - isolation & purification</topic><topic>HIV Integrase Inhibitors - pharmacology</topic><topic>HIV Integrase Inhibitors - therapeutic use</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Integrase</topic><topic>Mode of action</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Plant Bark - chemistry</topic><topic>Plant Stems - chemistry</topic><topic>Protein Domains</topic><topic>Public health</topic><topic>Recombinant Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Toxicity Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siwe-Noundou, Xavier</creatorcontrib><creatorcontrib>Musyoka, Thommas M.</creatorcontrib><creatorcontrib>Moses, Vuyani</creatorcontrib><creatorcontrib>Ndinteh, Derek T.</creatorcontrib><creatorcontrib>Mnkandhla, Dumisani</creatorcontrib><creatorcontrib>Hoppe, Heinrich</creatorcontrib><creatorcontrib>Tastan Bishop, Özlem</creatorcontrib><creatorcontrib>Krause, Rui W. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siwe-Noundou, Xavier</au><au>Musyoka, Thommas M.</au><au>Moses, Vuyani</au><au>Ndinteh, Derek T.</au><au>Mnkandhla, Dumisani</au><au>Hoppe, Heinrich</au><au>Tastan Bishop, Özlem</au><au>Krause, Rui W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-18</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>4718</spage><pages>4718-</pages><artnum>4718</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from
Alchornea cordifolia
. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC
50
= 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the
in vitro
and
in silico
results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in
A. cordifolia
stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30886338</pmid><doi>10.1038/s41598-019-41403-x</doi><orcidid>https://orcid.org/0000-0001-6861-7849</orcidid><orcidid>https://orcid.org/0000-0002-8667-8351</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.4718, Article 4718 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423119 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 14/34 140/131 631/154/309/606 631/154/555 Acquired immune deficiency syndrome Acquired Immunodeficiency Syndrome - drug therapy Acquired Immunodeficiency Syndrome - virology AIDS Alchornea Antiviral agents Bark Bioactive compounds Cytotoxicity Drug development Drug Evaluation, Preclinical Euphorbiaceae - chemistry Gallic Acid - analogs & derivatives Gallic Acid - chemistry Gallic Acid - isolation & purification Gallic Acid - pharmacology Gallic Acid - therapeutic use HeLa Cells HIV HIV Integrase - metabolism HIV Integrase - ultrastructure HIV Integrase Inhibitors - chemistry HIV Integrase Inhibitors - isolation & purification HIV Integrase Inhibitors - pharmacology HIV Integrase Inhibitors - therapeutic use HIV-1 - drug effects HIV-1 - enzymology Human immunodeficiency virus Humanities and Social Sciences Humans Inhibitory Concentration 50 Integrase Mode of action Molecular Docking Simulation Molecular Dynamics Simulation Molecular modelling multidisciplinary Plant Bark - chemistry Plant Stems - chemistry Protein Domains Public health Recombinant Proteins Science Science (multidisciplinary) Toxicity Tests |
title | Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-HIV-1%20integrase%20potency%20of%20methylgallate%20from%20Alchornea%20cordifolia%20using%20in%20vitro%20and%20in%20silico%20approaches&rft.jtitle=Scientific%20reports&rft.au=Siwe-Noundou,%20Xavier&rft.date=2019-03-18&rft.volume=9&rft.issue=1&rft.spage=4718&rft.pages=4718-&rft.artnum=4718&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41403-x&rft_dat=%3Cproquest_pubme%3E2193649900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193649900&rft_id=info:pmid/30886338&rfr_iscdi=true |