Characterizing protein-DNA binding event subtypes in ChIP-exo data
Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-03, Vol.35 (6), p.903-913 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 913 |
---|---|
container_issue | 6 |
container_start_page | 903 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Yamada, Naomi Lai, William K M Farrell, Nina Pugh, B Franklin Mahony, Shaun |
description | Abstract
Motivation
Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes.
Results
To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes.
Availability and implementation
ChExMix is available from https://github.com/seqcode/chexmix.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6419906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty703</oup_id><sourcerecordid>2098769728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhq2KqgvbPkJRjlwC49ixnQsSLC1FWrUc6Nmyk8mu0a4dbAdBn75BC6icymlGM9_8M6OfkK8Ujik07MS64Hwf4tZk16YTmx8lsA9kn3IBZQV1szflTMiSK2AzcpDSLUBNOeefyIwBFTWTbJ-cL9YmmjZjdH-cXxVDDBmdLy9-nhXW-e6phvfoc5HGaceAqXC-WKyvrkt8CEVnsvlMPvZmk_DLc5yT39-_3Sx-lMtfl1eLs2XZ1jXNpVLMqsqiEJWsuekYo601fdv3VgnVG8Elx75rURjobMel6IB2hkuoJUMENienO91htFucQJ-j2eghuq2JjzoYp992vFvrVbjXgtOmATEJHD0LxHA3Ysp661KLm43xGMakK6Vk06hK0f-j0CgpGlmpCa13aBtDShH714so6Cer9Fur9M6qae7w33dep168mQDYAWEc3qn5F5ZFqAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098769728</pqid></control><display><type>article</type><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><source>Oxford Journals Open Access Collection</source><creator>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</creator><creatorcontrib>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</creatorcontrib><description>Abstract
Motivation
Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes.
Results
To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes.
Availability and implementation
ChExMix is available from https://github.com/seqcode/chexmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty703</identifier><identifier>PMID: 30165373</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; bioinformatics ; Chromatin Immunoprecipitation ; Chromatin Immunoprecipitation Sequencing ; computer simulation ; crosslinking ; digestion ; DNA ; genome ; genomics ; Nucleotide Motifs ; Original Papers ; Protein Binding ; regulatory proteins ; Sequence Analysis, DNA</subject><ispartof>Bioinformatics, 2019-03, Vol.35 (6), p.903-913</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</citedby><cites>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419906/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419906/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/bty703$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30165373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamada, Naomi</creatorcontrib><creatorcontrib>Lai, William K M</creatorcontrib><creatorcontrib>Farrell, Nina</creatorcontrib><creatorcontrib>Pugh, B Franklin</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes.
Results
To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes.
Availability and implementation
ChExMix is available from https://github.com/seqcode/chexmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Binding Sites</subject><subject>bioinformatics</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromatin Immunoprecipitation Sequencing</subject><subject>computer simulation</subject><subject>crosslinking</subject><subject>digestion</subject><subject>DNA</subject><subject>genome</subject><subject>genomics</subject><subject>Nucleotide Motifs</subject><subject>Original Papers</subject><subject>Protein Binding</subject><subject>regulatory proteins</subject><subject>Sequence Analysis, DNA</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhq2KqgvbPkJRjlwC49ixnQsSLC1FWrUc6Nmyk8mu0a4dbAdBn75BC6icymlGM9_8M6OfkK8Ujik07MS64Hwf4tZk16YTmx8lsA9kn3IBZQV1szflTMiSK2AzcpDSLUBNOeefyIwBFTWTbJ-cL9YmmjZjdH-cXxVDDBmdLy9-nhXW-e6phvfoc5HGaceAqXC-WKyvrkt8CEVnsvlMPvZmk_DLc5yT39-_3Sx-lMtfl1eLs2XZ1jXNpVLMqsqiEJWsuekYo601fdv3VgnVG8Elx75rURjobMel6IB2hkuoJUMENienO91htFucQJ-j2eghuq2JjzoYp992vFvrVbjXgtOmATEJHD0LxHA3Ysp661KLm43xGMakK6Vk06hK0f-j0CgpGlmpCa13aBtDShH714so6Cer9Fur9M6qae7w33dep168mQDYAWEc3qn5F5ZFqAA</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Yamada, Naomi</creator><creator>Lai, William K M</creator><creator>Farrell, Nina</creator><creator>Pugh, B Franklin</creator><creator>Mahony, Shaun</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190315</creationdate><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><author>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binding Sites</topic><topic>bioinformatics</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromatin Immunoprecipitation Sequencing</topic><topic>computer simulation</topic><topic>crosslinking</topic><topic>digestion</topic><topic>DNA</topic><topic>genome</topic><topic>genomics</topic><topic>Nucleotide Motifs</topic><topic>Original Papers</topic><topic>Protein Binding</topic><topic>regulatory proteins</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Naomi</creatorcontrib><creatorcontrib>Lai, William K M</creatorcontrib><creatorcontrib>Farrell, Nina</creatorcontrib><creatorcontrib>Pugh, B Franklin</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamada, Naomi</au><au>Lai, William K M</au><au>Farrell, Nina</au><au>Pugh, B Franklin</au><au>Mahony, Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing protein-DNA binding event subtypes in ChIP-exo data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>903</spage><epage>913</epage><pages>903-913</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes.
Results
To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes.
Availability and implementation
ChExMix is available from https://github.com/seqcode/chexmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30165373</pmid><doi>10.1093/bioinformatics/bty703</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-03, Vol.35 (6), p.903-913 |
issn | 1367-4803 1460-2059 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6419906 |
source | Oxford Journals Open Access Collection |
subjects | Binding Sites bioinformatics Chromatin Immunoprecipitation Chromatin Immunoprecipitation Sequencing computer simulation crosslinking digestion DNA genome genomics Nucleotide Motifs Original Papers Protein Binding regulatory proteins Sequence Analysis, DNA |
title | Characterizing protein-DNA binding event subtypes in ChIP-exo data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20protein-DNA%20binding%20event%20subtypes%20in%20ChIP-exo%20data&rft.jtitle=Bioinformatics&rft.au=Yamada,%20Naomi&rft.date=2019-03-15&rft.volume=35&rft.issue=6&rft.spage=903&rft.epage=913&rft.pages=903-913&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty703&rft_dat=%3Cproquest_TOX%3E2098769728%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098769728&rft_id=info:pmid/30165373&rft_oup_id=10.1093/bioinformatics/bty703&rfr_iscdi=true |