Characterizing protein-DNA binding event subtypes in ChIP-exo data

Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-03, Vol.35 (6), p.903-913
Hauptverfasser: Yamada, Naomi, Lai, William K M, Farrell, Nina, Pugh, B Franklin, Mahony, Shaun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 913
container_issue 6
container_start_page 903
container_title Bioinformatics
container_volume 35
creator Yamada, Naomi
Lai, William K M
Farrell, Nina
Pugh, B Franklin
Mahony, Shaun
description Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes. Results To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes. Availability and implementation ChExMix is available from https://github.com/seqcode/chexmix. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/bty703
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6419906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty703</oup_id><sourcerecordid>2098769728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhq2KqgvbPkJRjlwC49ixnQsSLC1FWrUc6Nmyk8mu0a4dbAdBn75BC6icymlGM9_8M6OfkK8Ujik07MS64Hwf4tZk16YTmx8lsA9kn3IBZQV1szflTMiSK2AzcpDSLUBNOeefyIwBFTWTbJ-cL9YmmjZjdH-cXxVDDBmdLy9-nhXW-e6phvfoc5HGaceAqXC-WKyvrkt8CEVnsvlMPvZmk_DLc5yT39-_3Sx-lMtfl1eLs2XZ1jXNpVLMqsqiEJWsuekYo601fdv3VgnVG8Elx75rURjobMel6IB2hkuoJUMENienO91htFucQJ-j2eghuq2JjzoYp992vFvrVbjXgtOmATEJHD0LxHA3Ysp661KLm43xGMakK6Vk06hK0f-j0CgpGlmpCa13aBtDShH714so6Cer9Fur9M6qae7w33dep168mQDYAWEc3qn5F5ZFqAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098769728</pqid></control><display><type>article</type><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><source>Oxford Journals Open Access Collection</source><creator>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</creator><creatorcontrib>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</creatorcontrib><description>Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes. Results To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes. Availability and implementation ChExMix is available from https://github.com/seqcode/chexmix. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty703</identifier><identifier>PMID: 30165373</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; bioinformatics ; Chromatin Immunoprecipitation ; Chromatin Immunoprecipitation Sequencing ; computer simulation ; crosslinking ; digestion ; DNA ; genome ; genomics ; Nucleotide Motifs ; Original Papers ; Protein Binding ; regulatory proteins ; Sequence Analysis, DNA</subject><ispartof>Bioinformatics, 2019-03, Vol.35 (6), p.903-913</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</citedby><cites>FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419906/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419906/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/bty703$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30165373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamada, Naomi</creatorcontrib><creatorcontrib>Lai, William K M</creatorcontrib><creatorcontrib>Farrell, Nina</creatorcontrib><creatorcontrib>Pugh, B Franklin</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes. Results To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes. Availability and implementation ChExMix is available from https://github.com/seqcode/chexmix. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Binding Sites</subject><subject>bioinformatics</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromatin Immunoprecipitation Sequencing</subject><subject>computer simulation</subject><subject>crosslinking</subject><subject>digestion</subject><subject>DNA</subject><subject>genome</subject><subject>genomics</subject><subject>Nucleotide Motifs</subject><subject>Original Papers</subject><subject>Protein Binding</subject><subject>regulatory proteins</subject><subject>Sequence Analysis, DNA</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhq2KqgvbPkJRjlwC49ixnQsSLC1FWrUc6Nmyk8mu0a4dbAdBn75BC6icymlGM9_8M6OfkK8Ujik07MS64Hwf4tZk16YTmx8lsA9kn3IBZQV1szflTMiSK2AzcpDSLUBNOeefyIwBFTWTbJ-cL9YmmjZjdH-cXxVDDBmdLy9-nhXW-e6phvfoc5HGaceAqXC-WKyvrkt8CEVnsvlMPvZmk_DLc5yT39-_3Sx-lMtfl1eLs2XZ1jXNpVLMqsqiEJWsuekYo601fdv3VgnVG8Elx75rURjobMel6IB2hkuoJUMENienO91htFucQJ-j2eghuq2JjzoYp992vFvrVbjXgtOmATEJHD0LxHA3Ysp661KLm43xGMakK6Vk06hK0f-j0CgpGlmpCa13aBtDShH714so6Cer9Fur9M6qae7w33dep168mQDYAWEc3qn5F5ZFqAA</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Yamada, Naomi</creator><creator>Lai, William K M</creator><creator>Farrell, Nina</creator><creator>Pugh, B Franklin</creator><creator>Mahony, Shaun</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190315</creationdate><title>Characterizing protein-DNA binding event subtypes in ChIP-exo data</title><author>Yamada, Naomi ; Lai, William K M ; Farrell, Nina ; Pugh, B Franklin ; Mahony, Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-883b82be662754ad331cbafcffb868fa6474efdce6a0dbd476d01da470573ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binding Sites</topic><topic>bioinformatics</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromatin Immunoprecipitation Sequencing</topic><topic>computer simulation</topic><topic>crosslinking</topic><topic>digestion</topic><topic>DNA</topic><topic>genome</topic><topic>genomics</topic><topic>Nucleotide Motifs</topic><topic>Original Papers</topic><topic>Protein Binding</topic><topic>regulatory proteins</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Naomi</creatorcontrib><creatorcontrib>Lai, William K M</creatorcontrib><creatorcontrib>Farrell, Nina</creatorcontrib><creatorcontrib>Pugh, B Franklin</creatorcontrib><creatorcontrib>Mahony, Shaun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamada, Naomi</au><au>Lai, William K M</au><au>Farrell, Nina</au><au>Pugh, B Franklin</au><au>Mahony, Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing protein-DNA binding event subtypes in ChIP-exo data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>903</spage><epage>913</epage><pages>903-913</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes. Results To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes. Availability and implementation ChExMix is available from https://github.com/seqcode/chexmix. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30165373</pmid><doi>10.1093/bioinformatics/bty703</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-03, Vol.35 (6), p.903-913
issn 1367-4803
1460-2059
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6419906
source Oxford Journals Open Access Collection
subjects Binding Sites
bioinformatics
Chromatin Immunoprecipitation
Chromatin Immunoprecipitation Sequencing
computer simulation
crosslinking
digestion
DNA
genome
genomics
Nucleotide Motifs
Original Papers
Protein Binding
regulatory proteins
Sequence Analysis, DNA
title Characterizing protein-DNA binding event subtypes in ChIP-exo data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20protein-DNA%20binding%20event%20subtypes%20in%20ChIP-exo%20data&rft.jtitle=Bioinformatics&rft.au=Yamada,%20Naomi&rft.date=2019-03-15&rft.volume=35&rft.issue=6&rft.spage=903&rft.epage=913&rft.pages=903-913&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/bty703&rft_dat=%3Cproquest_TOX%3E2098769728%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098769728&rft_id=info:pmid/30165373&rft_oup_id=10.1093/bioinformatics/bty703&rfr_iscdi=true