Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects
Bone graft material should possess sufficient porosity and permeability to allow integration with native tissue and vascular invasion, and must satisfy oxygen and nutrient transport demands. In this study, we have examined the use of three-dimensional (3D)-printed polycaprolactone/tricalcium phospha...
Gespeichert in:
Veröffentlicht in: | Polymers 2017-09, Vol.9 (9), p.450 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 450 |
container_title | Polymers |
container_volume | 9 |
creator | Lee, Jeong Woo Chu, Seung Gyun Kim, Hak Tae Choi, Kang Young Oh, Eun Jung Shim, Jin-Hyung Yun, Won-Soo Huh, Jung Bo Moon, Sung Hwan Kang, Seong Soo Chung, Ho Yun |
description | Bone graft material should possess sufficient porosity and permeability to allow integration with native tissue and vascular invasion, and must satisfy oxygen and nutrient transport demands. In this study, we have examined the use of three-dimensional (3D)-printed polycaprolactone/tricalcium phosphate (PCL/TCP) composite material in bone grafting, to estimate the scope of its potential application in bone surgery. Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) are known to enhance osteointegration. We hypothesized that a patient-specific 3D-printed solid scaffold could help preserve seeded ADSCs and BMSCs and enhance osteointegration. Diffuse osteogenic tissue formation was observed by micro-computed tomography with both stem cell types, and the ADSC group displayed similar osteogenesis compared to the BMSC group. In histological assessment, the scaffold pores showed abundant ossification in both groups. Reverse transcription polymerase chain reaction (RT-PCR) showed that the BMSC group had higher expression of genes associated with ossification, and this was confirmed by Western blot analysis. The ADSC- and BMSC-seeded 3D-printed PCL/TCP scaffolds displayed promising enhancement of osteogenesis in a dog model of maxillary bone defects. |
doi_str_mv | 10.3390/polym9090450 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952046241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c34691e5c384796a5289d61cf9066133238ba69fbc361c8b9283616286809a823</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEolXpjjWyxIYFoX4knniDVGZ4SR11JIa15XFuEleOHWynZf4ZPw-XKdWAN76yPx0dH5-ieEnwO8YEvpi83Y8CC1zV-ElxSvGClRXj-OnRfFKcx3iD86pqzsnieXHCsOD1oq5Pi1_XMYHvwUE0EfkOXbZm8hHKFQRzCy1SrkUfvAO0ViH4O_QtwYiWYG1EdyYNaJMdaDUFb5VOmbvYBqOV1WYe0WbwcRpUgj8q2yFA1jUjuGi8UxZtgnHJuB5tQQ_OW9_vkXFIoZXv0dq3YO8drdVPY60K-4OPFXSgU3xRPOuUjXD-sJ8V3z993C6_lFfXn78uL69KXRGaSs0qLgjUmjXVQnBV00a0nOhO4JwFY5Q1O8VFt9MsnzY7QZs8cNrwBgvVUHZWvD_oTvNuhFaDS0FZOQUzZkvSKyP_vXFmkL2_lbwiTcPrLPDmQSD4HzPEJEcTdQ5QOfBzlDR_FOELQquMvv4PvfFzyElFSURNccVpRTL19kDp4GMM0D2aIVjet0IetyLjr44f8Aj_7QD7DYN3tZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952046241</pqid></control><display><type>article</type><title>Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lee, Jeong Woo ; Chu, Seung Gyun ; Kim, Hak Tae ; Choi, Kang Young ; Oh, Eun Jung ; Shim, Jin-Hyung ; Yun, Won-Soo ; Huh, Jung Bo ; Moon, Sung Hwan ; Kang, Seong Soo ; Chung, Ho Yun</creator><creatorcontrib>Lee, Jeong Woo ; Chu, Seung Gyun ; Kim, Hak Tae ; Choi, Kang Young ; Oh, Eun Jung ; Shim, Jin-Hyung ; Yun, Won-Soo ; Huh, Jung Bo ; Moon, Sung Hwan ; Kang, Seong Soo ; Chung, Ho Yun</creatorcontrib><description>Bone graft material should possess sufficient porosity and permeability to allow integration with native tissue and vascular invasion, and must satisfy oxygen and nutrient transport demands. In this study, we have examined the use of three-dimensional (3D)-printed polycaprolactone/tricalcium phosphate (PCL/TCP) composite material in bone grafting, to estimate the scope of its potential application in bone surgery. Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) are known to enhance osteointegration. We hypothesized that a patient-specific 3D-printed solid scaffold could help preserve seeded ADSCs and BMSCs and enhance osteointegration. Diffuse osteogenic tissue formation was observed by micro-computed tomography with both stem cell types, and the ADSC group displayed similar osteogenesis compared to the BMSC group. In histological assessment, the scaffold pores showed abundant ossification in both groups. Reverse transcription polymerase chain reaction (RT-PCR) showed that the BMSC group had higher expression of genes associated with ossification, and this was confirmed by Western blot analysis. The ADSC- and BMSC-seeded 3D-printed PCL/TCP scaffolds displayed promising enhancement of osteogenesis in a dog model of maxillary bone defects.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym9090450</identifier><identifier>PMID: 30965755</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biocompatibility ; Bone marrow ; Bones ; Calcium phosphates ; Composite materials ; Computed tomography ; Defects ; Gene expression ; Grafting ; Polycaprolactone ; Polymerase chain reaction ; Porosity ; Scaffolds ; Stem cells ; Three dimensional models ; Three dimensional printing</subject><ispartof>Polymers, 2017-09, Vol.9 (9), p.450</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c34691e5c384796a5289d61cf9066133238ba69fbc361c8b9283616286809a823</citedby><cites>FETCH-LOGICAL-c412t-c34691e5c384796a5289d61cf9066133238ba69fbc361c8b9283616286809a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418865/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418865/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30965755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jeong Woo</creatorcontrib><creatorcontrib>Chu, Seung Gyun</creatorcontrib><creatorcontrib>Kim, Hak Tae</creatorcontrib><creatorcontrib>Choi, Kang Young</creatorcontrib><creatorcontrib>Oh, Eun Jung</creatorcontrib><creatorcontrib>Shim, Jin-Hyung</creatorcontrib><creatorcontrib>Yun, Won-Soo</creatorcontrib><creatorcontrib>Huh, Jung Bo</creatorcontrib><creatorcontrib>Moon, Sung Hwan</creatorcontrib><creatorcontrib>Kang, Seong Soo</creatorcontrib><creatorcontrib>Chung, Ho Yun</creatorcontrib><title>Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Bone graft material should possess sufficient porosity and permeability to allow integration with native tissue and vascular invasion, and must satisfy oxygen and nutrient transport demands. In this study, we have examined the use of three-dimensional (3D)-printed polycaprolactone/tricalcium phosphate (PCL/TCP) composite material in bone grafting, to estimate the scope of its potential application in bone surgery. Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) are known to enhance osteointegration. We hypothesized that a patient-specific 3D-printed solid scaffold could help preserve seeded ADSCs and BMSCs and enhance osteointegration. Diffuse osteogenic tissue formation was observed by micro-computed tomography with both stem cell types, and the ADSC group displayed similar osteogenesis compared to the BMSC group. In histological assessment, the scaffold pores showed abundant ossification in both groups. Reverse transcription polymerase chain reaction (RT-PCR) showed that the BMSC group had higher expression of genes associated with ossification, and this was confirmed by Western blot analysis. The ADSC- and BMSC-seeded 3D-printed PCL/TCP scaffolds displayed promising enhancement of osteogenesis in a dog model of maxillary bone defects.</description><subject>Biocompatibility</subject><subject>Bone marrow</subject><subject>Bones</subject><subject>Calcium phosphates</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Defects</subject><subject>Gene expression</subject><subject>Grafting</subject><subject>Polycaprolactone</subject><subject>Polymerase chain reaction</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkktv1DAUhSMEolXpjjWyxIYFoX4knniDVGZ4SR11JIa15XFuEleOHWynZf4ZPw-XKdWAN76yPx0dH5-ieEnwO8YEvpi83Y8CC1zV-ElxSvGClRXj-OnRfFKcx3iD86pqzsnieXHCsOD1oq5Pi1_XMYHvwUE0EfkOXbZm8hHKFQRzCy1SrkUfvAO0ViH4O_QtwYiWYG1EdyYNaJMdaDUFb5VOmbvYBqOV1WYe0WbwcRpUgj8q2yFA1jUjuGi8UxZtgnHJuB5tQQ_OW9_vkXFIoZXv0dq3YO8drdVPY60K-4OPFXSgU3xRPOuUjXD-sJ8V3z993C6_lFfXn78uL69KXRGaSs0qLgjUmjXVQnBV00a0nOhO4JwFY5Q1O8VFt9MsnzY7QZs8cNrwBgvVUHZWvD_oTvNuhFaDS0FZOQUzZkvSKyP_vXFmkL2_lbwiTcPrLPDmQSD4HzPEJEcTdQ5QOfBzlDR_FOELQquMvv4PvfFzyElFSURNccVpRTL19kDp4GMM0D2aIVjet0IetyLjr44f8Aj_7QD7DYN3tZY</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Lee, Jeong Woo</creator><creator>Chu, Seung Gyun</creator><creator>Kim, Hak Tae</creator><creator>Choi, Kang Young</creator><creator>Oh, Eun Jung</creator><creator>Shim, Jin-Hyung</creator><creator>Yun, Won-Soo</creator><creator>Huh, Jung Bo</creator><creator>Moon, Sung Hwan</creator><creator>Kang, Seong Soo</creator><creator>Chung, Ho Yun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170915</creationdate><title>Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects</title><author>Lee, Jeong Woo ; Chu, Seung Gyun ; Kim, Hak Tae ; Choi, Kang Young ; Oh, Eun Jung ; Shim, Jin-Hyung ; Yun, Won-Soo ; Huh, Jung Bo ; Moon, Sung Hwan ; Kang, Seong Soo ; Chung, Ho Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c34691e5c384796a5289d61cf9066133238ba69fbc361c8b9283616286809a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocompatibility</topic><topic>Bone marrow</topic><topic>Bones</topic><topic>Calcium phosphates</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Defects</topic><topic>Gene expression</topic><topic>Grafting</topic><topic>Polycaprolactone</topic><topic>Polymerase chain reaction</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong Woo</creatorcontrib><creatorcontrib>Chu, Seung Gyun</creatorcontrib><creatorcontrib>Kim, Hak Tae</creatorcontrib><creatorcontrib>Choi, Kang Young</creatorcontrib><creatorcontrib>Oh, Eun Jung</creatorcontrib><creatorcontrib>Shim, Jin-Hyung</creatorcontrib><creatorcontrib>Yun, Won-Soo</creatorcontrib><creatorcontrib>Huh, Jung Bo</creatorcontrib><creatorcontrib>Moon, Sung Hwan</creatorcontrib><creatorcontrib>Kang, Seong Soo</creatorcontrib><creatorcontrib>Chung, Ho Yun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeong Woo</au><au>Chu, Seung Gyun</au><au>Kim, Hak Tae</au><au>Choi, Kang Young</au><au>Oh, Eun Jung</au><au>Shim, Jin-Hyung</au><au>Yun, Won-Soo</au><au>Huh, Jung Bo</au><au>Moon, Sung Hwan</au><au>Kang, Seong Soo</au><au>Chung, Ho Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>9</volume><issue>9</issue><spage>450</spage><pages>450-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Bone graft material should possess sufficient porosity and permeability to allow integration with native tissue and vascular invasion, and must satisfy oxygen and nutrient transport demands. In this study, we have examined the use of three-dimensional (3D)-printed polycaprolactone/tricalcium phosphate (PCL/TCP) composite material in bone grafting, to estimate the scope of its potential application in bone surgery. Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) are known to enhance osteointegration. We hypothesized that a patient-specific 3D-printed solid scaffold could help preserve seeded ADSCs and BMSCs and enhance osteointegration. Diffuse osteogenic tissue formation was observed by micro-computed tomography with both stem cell types, and the ADSC group displayed similar osteogenesis compared to the BMSC group. In histological assessment, the scaffold pores showed abundant ossification in both groups. Reverse transcription polymerase chain reaction (RT-PCR) showed that the BMSC group had higher expression of genes associated with ossification, and this was confirmed by Western blot analysis. The ADSC- and BMSC-seeded 3D-printed PCL/TCP scaffolds displayed promising enhancement of osteogenesis in a dog model of maxillary bone defects.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30965755</pmid><doi>10.3390/polym9090450</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2017-09, Vol.9 (9), p.450 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418865 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biocompatibility Bone marrow Bones Calcium phosphates Composite materials Computed tomography Defects Gene expression Grafting Polycaprolactone Polymerase chain reaction Porosity Scaffolds Stem cells Three dimensional models Three dimensional printing |
title | Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteogenesis%20of%20Adipose-Derived%20and%20Bone%20Marrow%20Stem%20Cells%20with%20Polycaprolactone/Tricalcium%20Phosphate%20and%20Three-Dimensional%20Printing%20Technology%20in%20a%20Dog%20Model%20of%20Maxillary%20Bone%20Defects&rft.jtitle=Polymers&rft.au=Lee,%20Jeong%20Woo&rft.date=2017-09-15&rft.volume=9&rft.issue=9&rft.spage=450&rft.pages=450-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym9090450&rft_dat=%3Cproquest_pubme%3E1952046241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952046241&rft_id=info:pmid/30965755&rfr_iscdi=true |