Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers
Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspi...
Gespeichert in:
Veröffentlicht in: | Polymers 2017-12, Vol.9 (12), p.714 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 714 |
container_title | Polymers |
container_volume | 9 |
creator | Duan, Yongqing Ding, Yajiang Bian, Jing Xu, Zhoulong Yin, Zhouping Huang, Yongan |
description | Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting. |
doi_str_mv | 10.3390/polym9120714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207170644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</originalsourceid><addsrcrecordid>eNpdkc1LJDEQxcOirKLe9rw0ePGwrUknk04ugsj6AeOuoJ5DJV09E8l0xqRHcP_6zeAHo7lUqPzyqFePkB-MHnOu6ckyhpeFZg1tmfhGdkvlteCSbm3cd8hBzo-0HDGRkrXfyQ6nWkrK1C6ZP4QxQX03JhzdHGzA6tbjv4gB3Zi8q_7AEGc4YIIxplw9e6imkGZY3zko8FnwswG76iKBGyFU10Ne-lQaN96leLL-3XuLKe-T7R5CxoO3ukceLn7fn1_V07-X1-dn09oJ1oy1pX3HLe-obUXbaw2caXAaVQNaNROgfSO6TkqU0naoHDgQVlimddda2Su-R05fdZcru8DO4VD8BbNMfgHpxUTw5vPL4OdmFp-NFExJ1hSBozeBFJ9WmEez8NlhCDBgXGXTrJfdUilEQQ-_oI9xlYZizzCt1ETpVq0n-vVKlYXknLD_GIZRs07RbKZY8J-bBj7g98z4f3FYmzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988589788</pqid></control><display><type>article</type><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</creator><creatorcontrib>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</creatorcontrib><description>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym9120714</identifier><identifier>PMID: 30966018</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Buckling ; Elastomers ; Electric power generation ; Electricity ; Electrohydrodynamics ; Electronics ; Energy harvesting ; Fractals ; Microelectrodes ; Nanofibers ; Nanogenerators ; Piezoelectricity ; Polyvinylidene fluorides ; Printing ; Self-assembly ; Serpentine ; Stability ; Stretchability ; Vinylidene fluoride ; Wearable technology</subject><ispartof>Polymers, 2017-12, Vol.9 (12), p.714</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</citedby><cites>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30966018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Xu, Zhoulong</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><creatorcontrib>Huang, Yongan</creatorcontrib><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</description><subject>Buckling</subject><subject>Elastomers</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electrohydrodynamics</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Fractals</subject><subject>Microelectrodes</subject><subject>Nanofibers</subject><subject>Nanogenerators</subject><subject>Piezoelectricity</subject><subject>Polyvinylidene fluorides</subject><subject>Printing</subject><subject>Self-assembly</subject><subject>Serpentine</subject><subject>Stability</subject><subject>Stretchability</subject><subject>Vinylidene fluoride</subject><subject>Wearable technology</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1LJDEQxcOirKLe9rw0ePGwrUknk04ugsj6AeOuoJ5DJV09E8l0xqRHcP_6zeAHo7lUqPzyqFePkB-MHnOu6ckyhpeFZg1tmfhGdkvlteCSbm3cd8hBzo-0HDGRkrXfyQ6nWkrK1C6ZP4QxQX03JhzdHGzA6tbjv4gB3Zi8q_7AEGc4YIIxplw9e6imkGZY3zko8FnwswG76iKBGyFU10Ne-lQaN96leLL-3XuLKe-T7R5CxoO3ukceLn7fn1_V07-X1-dn09oJ1oy1pX3HLe-obUXbaw2caXAaVQNaNROgfSO6TkqU0naoHDgQVlimddda2Su-R05fdZcru8DO4VD8BbNMfgHpxUTw5vPL4OdmFp-NFExJ1hSBozeBFJ9WmEez8NlhCDBgXGXTrJfdUilEQQ-_oI9xlYZizzCt1ETpVq0n-vVKlYXknLD_GIZRs07RbKZY8J-bBj7g98z4f3FYmzs</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Duan, Yongqing</creator><creator>Ding, Yajiang</creator><creator>Bian, Jing</creator><creator>Xu, Zhoulong</creator><creator>Yin, Zhouping</creator><creator>Huang, Yongan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171215</creationdate><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><author>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckling</topic><topic>Elastomers</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electrohydrodynamics</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Fractals</topic><topic>Microelectrodes</topic><topic>Nanofibers</topic><topic>Nanogenerators</topic><topic>Piezoelectricity</topic><topic>Polyvinylidene fluorides</topic><topic>Printing</topic><topic>Self-assembly</topic><topic>Serpentine</topic><topic>Stability</topic><topic>Stretchability</topic><topic>Vinylidene fluoride</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Xu, Zhoulong</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><creatorcontrib>Huang, Yongan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yongqing</au><au>Ding, Yajiang</au><au>Bian, Jing</au><au>Xu, Zhoulong</au><au>Yin, Zhouping</au><au>Huang, Yongan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>9</volume><issue>12</issue><spage>714</spage><pages>714-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30966018</pmid><doi>10.3390/polym9120714</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2017-12, Vol.9 (12), p.714 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418612 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Buckling Elastomers Electric power generation Electricity Electrohydrodynamics Electronics Energy harvesting Fractals Microelectrodes Nanofibers Nanogenerators Piezoelectricity Polyvinylidene fluorides Printing Self-assembly Serpentine Stability Stretchability Vinylidene fluoride Wearable technology |
title | Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Stretchable%20Piezoelectric%20Nanogenerators%20via%20Large-Scale%20Aligned%20Fractal%20Inspired%20Micro/Nanofibers&rft.jtitle=Polymers&rft.au=Duan,%20Yongqing&rft.date=2017-12-15&rft.volume=9&rft.issue=12&rft.spage=714&rft.pages=714-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym9120714&rft_dat=%3Cproquest_pubme%3E2207170644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988589788&rft_id=info:pmid/30966018&rfr_iscdi=true |