Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers

Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2017-12, Vol.9 (12), p.714
Hauptverfasser: Duan, Yongqing, Ding, Yajiang, Bian, Jing, Xu, Zhoulong, Yin, Zhouping, Huang, Yongan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 714
container_title Polymers
container_volume 9
creator Duan, Yongqing
Ding, Yajiang
Bian, Jing
Xu, Zhoulong
Yin, Zhouping
Huang, Yongan
description Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.
doi_str_mv 10.3390/polym9120714
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207170644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</originalsourceid><addsrcrecordid>eNpdkc1LJDEQxcOirKLe9rw0ePGwrUknk04ugsj6AeOuoJ5DJV09E8l0xqRHcP_6zeAHo7lUqPzyqFePkB-MHnOu6ckyhpeFZg1tmfhGdkvlteCSbm3cd8hBzo-0HDGRkrXfyQ6nWkrK1C6ZP4QxQX03JhzdHGzA6tbjv4gB3Zi8q_7AEGc4YIIxplw9e6imkGZY3zko8FnwswG76iKBGyFU10Ne-lQaN96leLL-3XuLKe-T7R5CxoO3ukceLn7fn1_V07-X1-dn09oJ1oy1pX3HLe-obUXbaw2caXAaVQNaNROgfSO6TkqU0naoHDgQVlimddda2Su-R05fdZcru8DO4VD8BbNMfgHpxUTw5vPL4OdmFp-NFExJ1hSBozeBFJ9WmEez8NlhCDBgXGXTrJfdUilEQQ-_oI9xlYZizzCt1ETpVq0n-vVKlYXknLD_GIZRs07RbKZY8J-bBj7g98z4f3FYmzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988589788</pqid></control><display><type>article</type><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</creator><creatorcontrib>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</creatorcontrib><description>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (&gt;200%) and electricity (currents &gt;200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym9120714</identifier><identifier>PMID: 30966018</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Buckling ; Elastomers ; Electric power generation ; Electricity ; Electrohydrodynamics ; Electronics ; Energy harvesting ; Fractals ; Microelectrodes ; Nanofibers ; Nanogenerators ; Piezoelectricity ; Polyvinylidene fluorides ; Printing ; Self-assembly ; Serpentine ; Stability ; Stretchability ; Vinylidene fluoride ; Wearable technology</subject><ispartof>Polymers, 2017-12, Vol.9 (12), p.714</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</citedby><cites>FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30966018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Xu, Zhoulong</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><creatorcontrib>Huang, Yongan</creatorcontrib><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (&gt;200%) and electricity (currents &gt;200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</description><subject>Buckling</subject><subject>Elastomers</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electrohydrodynamics</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Fractals</subject><subject>Microelectrodes</subject><subject>Nanofibers</subject><subject>Nanogenerators</subject><subject>Piezoelectricity</subject><subject>Polyvinylidene fluorides</subject><subject>Printing</subject><subject>Self-assembly</subject><subject>Serpentine</subject><subject>Stability</subject><subject>Stretchability</subject><subject>Vinylidene fluoride</subject><subject>Wearable technology</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1LJDEQxcOirKLe9rw0ePGwrUknk04ugsj6AeOuoJ5DJV09E8l0xqRHcP_6zeAHo7lUqPzyqFePkB-MHnOu6ckyhpeFZg1tmfhGdkvlteCSbm3cd8hBzo-0HDGRkrXfyQ6nWkrK1C6ZP4QxQX03JhzdHGzA6tbjv4gB3Zi8q_7AEGc4YIIxplw9e6imkGZY3zko8FnwswG76iKBGyFU10Ne-lQaN96leLL-3XuLKe-T7R5CxoO3ukceLn7fn1_V07-X1-dn09oJ1oy1pX3HLe-obUXbaw2caXAaVQNaNROgfSO6TkqU0naoHDgQVlimddda2Su-R05fdZcru8DO4VD8BbNMfgHpxUTw5vPL4OdmFp-NFExJ1hSBozeBFJ9WmEez8NlhCDBgXGXTrJfdUilEQQ-_oI9xlYZizzCt1ETpVq0n-vVKlYXknLD_GIZRs07RbKZY8J-bBj7g98z4f3FYmzs</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Duan, Yongqing</creator><creator>Ding, Yajiang</creator><creator>Bian, Jing</creator><creator>Xu, Zhoulong</creator><creator>Yin, Zhouping</creator><creator>Huang, Yongan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171215</creationdate><title>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</title><author>Duan, Yongqing ; Ding, Yajiang ; Bian, Jing ; Xu, Zhoulong ; Yin, Zhouping ; Huang, Yongan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-b0fd3b3d0b747f99a319ac9e82a9825a0f24dd66e66bde8caca4b4b199d7b6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckling</topic><topic>Elastomers</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electrohydrodynamics</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Fractals</topic><topic>Microelectrodes</topic><topic>Nanofibers</topic><topic>Nanogenerators</topic><topic>Piezoelectricity</topic><topic>Polyvinylidene fluorides</topic><topic>Printing</topic><topic>Self-assembly</topic><topic>Serpentine</topic><topic>Stability</topic><topic>Stretchability</topic><topic>Vinylidene fluoride</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Xu, Zhoulong</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><creatorcontrib>Huang, Yongan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yongqing</au><au>Ding, Yajiang</au><au>Bian, Jing</au><au>Xu, Zhoulong</au><au>Yin, Zhouping</au><au>Huang, Yongan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>9</volume><issue>12</issue><spage>714</spage><pages>714-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (&gt;200%) and electricity (currents &gt;200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30966018</pmid><doi>10.3390/polym9120714</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2017-12, Vol.9 (12), p.714
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418612
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Buckling
Elastomers
Electric power generation
Electricity
Electrohydrodynamics
Electronics
Energy harvesting
Fractals
Microelectrodes
Nanofibers
Nanogenerators
Piezoelectricity
Polyvinylidene fluorides
Printing
Self-assembly
Serpentine
Stability
Stretchability
Vinylidene fluoride
Wearable technology
title Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Stretchable%20Piezoelectric%20Nanogenerators%20via%20Large-Scale%20Aligned%20Fractal%20Inspired%20Micro/Nanofibers&rft.jtitle=Polymers&rft.au=Duan,%20Yongqing&rft.date=2017-12-15&rft.volume=9&rft.issue=12&rft.spage=714&rft.pages=714-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym9120714&rft_dat=%3Cproquest_pubme%3E2207170644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988589788&rft_id=info:pmid/30966018&rfr_iscdi=true