Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties
Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground us...
Gespeichert in:
Veröffentlicht in: | Polymers 2017-08, Vol.9 (9), p.392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 392 |
container_title | Polymers |
container_volume | 9 |
creator | Ghasemi, Shokoofeh Tajvidi, Mehdi Bousfield, Douglas W Gardner, Douglas J Gramlich, William M |
description | Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using a syringe pump-heat gun setting at three drying temperatures of 210 °C, 320 °C and 430 °C. The structure of starting CNF materials was first evaluated using a combination of optical and atomic force microscopy (AFM) techniques. Surface free energy analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR⁻FTIR) were used to study changes in hydrophobicity due to grinding. Morphology of the filaments was studied using SEM micrographs. The influence of different drying temperatures and grinding times on mechanical properties of the CNF filaments were further investigated through tensile tests and results were compared using statistical analysis .It was observed that drying temperature did not significantly influence the tensile properties of the filaments while cellulose nanofiber suspension type (grinding time) had a significant influence and improved mechanical properties. FTIR results confirmed an increase in crystallinity index and decrease in hydroxyl group availability due to grinding. |
doi_str_mv | 10.3390/polym9090392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207167145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-dcd59e534e177a5e05a98079c38ef3add59fa5db1c7d787c7bdbf1f92937844a3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYMottTuXEvAjQtHk8lMMnEhlGerhVKF1nXIZG5qSiYZk4nwFv7vTW19PM3mBs7vHO4HQi8peceYJO-X6LezJJIw2T5Bhy0RrOkYJ0_3_gfoOOdbUl_Xc07Fc3TAiOQ9l_wQ_f6Uts3VUgK-BL3iDXhffMyAL3WI1o3JeXzmvJ4hrPkDPg_WFwgGcLS4Wl24wdcwL5D0WhJgHaZ959WaivkjxLCLwd9SrIbVQX6BnlntMxw_1iP0_ez0evOlufj6-XxzctGYjrZrM5mpl9CzDqgQugfSazkQIQ0bwDI9VdXqfhqpEZMYhBHjNFpqZSuZGLpOsyP08SF3KeMMk6ldJO3Vktys01ZF7dS_SnA_1E38pXhHB05JDXjzGJDizwJ5VbPLpi5LB4glq7Zum3JBu76ir_9Db2NJoY6nqOxb0nEi7qm3D5RJMecEdtcMJer-tGr_tBV_tT_ADv57SHYHsn2iqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952046075</pqid></control><display><type>article</type><title>Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Ghasemi, Shokoofeh ; Tajvidi, Mehdi ; Bousfield, Douglas W ; Gardner, Douglas J ; Gramlich, William M</creator><creatorcontrib>Ghasemi, Shokoofeh ; Tajvidi, Mehdi ; Bousfield, Douglas W ; Gardner, Douglas J ; Gramlich, William M</creatorcontrib><description>Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using a syringe pump-heat gun setting at three drying temperatures of 210 °C, 320 °C and 430 °C. The structure of starting CNF materials was first evaluated using a combination of optical and atomic force microscopy (AFM) techniques. Surface free energy analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR⁻FTIR) were used to study changes in hydrophobicity due to grinding. Morphology of the filaments was studied using SEM micrographs. The influence of different drying temperatures and grinding times on mechanical properties of the CNF filaments were further investigated through tensile tests and results were compared using statistical analysis .It was observed that drying temperature did not significantly influence the tensile properties of the filaments while cellulose nanofiber suspension type (grinding time) had a significant influence and improved mechanical properties. FTIR results confirmed an increase in crystallinity index and decrease in hydroxyl group availability due to grinding.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym9090392</identifier><identifier>PMID: 30965696</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Atomic force microscopy ; Atomic structure ; Cellulose ; Drying ; Filaments ; Fourier transforms ; Free energy ; Grinding ; Hydrophobicity ; Infrared analysis ; Infrared spectroscopy ; Mechanical properties ; Nanofibers ; Nuclear electric power generation ; Photomicrographs ; Reflectance ; Spinning (materials) ; Statistical analysis ; Temperature ; Tensile properties ; Tensile tests</subject><ispartof>Polymers, 2017-08, Vol.9 (9), p.392</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-dcd59e534e177a5e05a98079c38ef3add59fa5db1c7d787c7bdbf1f92937844a3</citedby><cites>FETCH-LOGICAL-c412t-dcd59e534e177a5e05a98079c38ef3add59fa5db1c7d787c7bdbf1f92937844a3</cites><orcidid>0000-0002-7040-6503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30965696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghasemi, Shokoofeh</creatorcontrib><creatorcontrib>Tajvidi, Mehdi</creatorcontrib><creatorcontrib>Bousfield, Douglas W</creatorcontrib><creatorcontrib>Gardner, Douglas J</creatorcontrib><creatorcontrib>Gramlich, William M</creatorcontrib><title>Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using a syringe pump-heat gun setting at three drying temperatures of 210 °C, 320 °C and 430 °C. The structure of starting CNF materials was first evaluated using a combination of optical and atomic force microscopy (AFM) techniques. Surface free energy analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR⁻FTIR) were used to study changes in hydrophobicity due to grinding. Morphology of the filaments was studied using SEM micrographs. The influence of different drying temperatures and grinding times on mechanical properties of the CNF filaments were further investigated through tensile tests and results were compared using statistical analysis .It was observed that drying temperature did not significantly influence the tensile properties of the filaments while cellulose nanofiber suspension type (grinding time) had a significant influence and improved mechanical properties. FTIR results confirmed an increase in crystallinity index and decrease in hydroxyl group availability due to grinding.</description><subject>Atomic force microscopy</subject><subject>Atomic structure</subject><subject>Cellulose</subject><subject>Drying</subject><subject>Filaments</subject><subject>Fourier transforms</subject><subject>Free energy</subject><subject>Grinding</subject><subject>Hydrophobicity</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Mechanical properties</subject><subject>Nanofibers</subject><subject>Nuclear electric power generation</subject><subject>Photomicrographs</subject><subject>Reflectance</subject><subject>Spinning (materials)</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1rFTEUxYMottTuXEvAjQtHk8lMMnEhlGerhVKF1nXIZG5qSiYZk4nwFv7vTW19PM3mBs7vHO4HQi8peceYJO-X6LezJJIw2T5Bhy0RrOkYJ0_3_gfoOOdbUl_Xc07Fc3TAiOQ9l_wQ_f6Uts3VUgK-BL3iDXhffMyAL3WI1o3JeXzmvJ4hrPkDPg_WFwgGcLS4Wl24wdcwL5D0WhJgHaZ959WaivkjxLCLwd9SrIbVQX6BnlntMxw_1iP0_ez0evOlufj6-XxzctGYjrZrM5mpl9CzDqgQugfSazkQIQ0bwDI9VdXqfhqpEZMYhBHjNFpqZSuZGLpOsyP08SF3KeMMk6ldJO3Vktys01ZF7dS_SnA_1E38pXhHB05JDXjzGJDizwJ5VbPLpi5LB4glq7Zum3JBu76ir_9Db2NJoY6nqOxb0nEi7qm3D5RJMecEdtcMJer-tGr_tBV_tT_ADv57SHYHsn2iqw</recordid><startdate>20170825</startdate><enddate>20170825</enddate><creator>Ghasemi, Shokoofeh</creator><creator>Tajvidi, Mehdi</creator><creator>Bousfield, Douglas W</creator><creator>Gardner, Douglas J</creator><creator>Gramlich, William M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7040-6503</orcidid></search><sort><creationdate>20170825</creationdate><title>Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties</title><author>Ghasemi, Shokoofeh ; Tajvidi, Mehdi ; Bousfield, Douglas W ; Gardner, Douglas J ; Gramlich, William M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-dcd59e534e177a5e05a98079c38ef3add59fa5db1c7d787c7bdbf1f92937844a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy</topic><topic>Atomic structure</topic><topic>Cellulose</topic><topic>Drying</topic><topic>Filaments</topic><topic>Fourier transforms</topic><topic>Free energy</topic><topic>Grinding</topic><topic>Hydrophobicity</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Mechanical properties</topic><topic>Nanofibers</topic><topic>Nuclear electric power generation</topic><topic>Photomicrographs</topic><topic>Reflectance</topic><topic>Spinning (materials)</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi, Shokoofeh</creatorcontrib><creatorcontrib>Tajvidi, Mehdi</creatorcontrib><creatorcontrib>Bousfield, Douglas W</creatorcontrib><creatorcontrib>Gardner, Douglas J</creatorcontrib><creatorcontrib>Gramlich, William M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasemi, Shokoofeh</au><au>Tajvidi, Mehdi</au><au>Bousfield, Douglas W</au><au>Gardner, Douglas J</au><au>Gramlich, William M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2017-08-25</date><risdate>2017</risdate><volume>9</volume><issue>9</issue><spage>392</spage><pages>392-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using a syringe pump-heat gun setting at three drying temperatures of 210 °C, 320 °C and 430 °C. The structure of starting CNF materials was first evaluated using a combination of optical and atomic force microscopy (AFM) techniques. Surface free energy analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR⁻FTIR) were used to study changes in hydrophobicity due to grinding. Morphology of the filaments was studied using SEM micrographs. The influence of different drying temperatures and grinding times on mechanical properties of the CNF filaments were further investigated through tensile tests and results were compared using statistical analysis .It was observed that drying temperature did not significantly influence the tensile properties of the filaments while cellulose nanofiber suspension type (grinding time) had a significant influence and improved mechanical properties. FTIR results confirmed an increase in crystallinity index and decrease in hydroxyl group availability due to grinding.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30965696</pmid><doi>10.3390/polym9090392</doi><orcidid>https://orcid.org/0000-0002-7040-6503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2017-08, Vol.9 (9), p.392 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418610 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Atomic force microscopy Atomic structure Cellulose Drying Filaments Fourier transforms Free energy Grinding Hydrophobicity Infrared analysis Infrared spectroscopy Mechanical properties Nanofibers Nuclear electric power generation Photomicrographs Reflectance Spinning (materials) Statistical analysis Temperature Tensile properties Tensile tests |
title | Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dry-Spun%20Neat%20Cellulose%20Nanofibril%20Filaments:%20Influence%20of%20Drying%20Temperature%20and%20Nanofibril%20Structure%20on%20Filament%20Properties&rft.jtitle=Polymers&rft.au=Ghasemi,%20Shokoofeh&rft.date=2017-08-25&rft.volume=9&rft.issue=9&rft.spage=392&rft.pages=392-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym9090392&rft_dat=%3Cproquest_pubme%3E2207167145%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952046075&rft_id=info:pmid/30965696&rfr_iscdi=true |