Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study

The base-catalyzed resorcinol-formaldehyde condensation reactions were theoretically investigated in this study by employing a quantum chemistry method. The condensation reaction includes two steps: (1) formation of the quinonemethide (QM) intermediate from hydroxymethylresorcinol; (2) Michael addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2017-09, Vol.9 (9), p.426
Hauptverfasser: Li, Taohong, Cao, Ming, Liang, Jiankun, Xie, Xiaoguang, Du, Guanben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 426
container_title Polymers
container_volume 9
creator Li, Taohong
Cao, Ming
Liang, Jiankun
Xie, Xiaoguang
Du, Guanben
description The base-catalyzed resorcinol-formaldehyde condensation reactions were theoretically investigated in this study by employing a quantum chemistry method. The condensation reaction includes two steps: (1) formation of the quinonemethide (QM) intermediate from hydroxymethylresorcinol; (2) Michael addition between the quinonemethide and resorcinol anion. The first step is the rate-determining step. Two mechanisms, unimolecular elimination of the conjugate base (E1cb) and water-aided elimination (WAE), were identified for the formation of QM. The hydroxymethylresorcinol anion produces neutral QM while the dianion produces a quinonemethide anion (QMA). The calculated potential energy barriers suggested that the QMA formation is much more favorable. Although resorcinol-formaldehyde and phenol-formaldehyde condensations share a common mechanism, the former would be faster if the QMA participates in condensations. The potential energy barriers for formation of 2-QM, 4-QM, 6-QM, 2-QMA, and 4-QMA were calculated. The results show that the formations of 6-QM and 4-QMA have relatively lower energy barriers. This rationalized previous experimental observations that the 2,4-(2,6-) and 6,6'-(4,4'-) methylene linkages were dominant, whereas the 2,2'-linkage was almost absent. The resorcinol-phenol-formaldehyde co-condensations were also calculated. The cold-setting characteristic of phenol-resorcinol-formaldehyde co-condensed resin can be attributed to participation of resorcinol quinonemethides in condensations.
doi_str_mv 10.3390/polym9090426
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207170406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3b16e7c556c52d9128d272d12fa0ca30c8277361c952236829901484ab7b974f3</originalsourceid><addsrcrecordid>eNp1kc9rFTEQx4MottTePMuCFw-u5tcmGw9CfVgVKorWc5iXzLpbsslrsiusR_9y99FanoJzmWHmw5eZ-RLymNEXQhj6cpfCMhpqqOTqHjnmVItaCkXvH9RH5LSUK7qGbJRi-iE5EtSoRgt6TH59RNdDHMpYpa56AwXrDUwQlp_oqy9YUnZDTKE-T3mE4LFfPFYQffW5x33_f8gmRY-xwDSkuOqA2xflVXVWXfaYMk6Dg1B9nWa_PCIPOggFT2_zCfl2_vZy876--PTuw-bsonZSt1Mttkyhdk2jXMO9Ybz1XHPPeAfUgaCu5VoLxZxpOBeq5cZQJlsJW701WnbihLy-0d3N2xG9wzhlCHaXhxHyYhMM9u9JHHr7Pf2wSrK24WwVeHYrkNP1jGWy41AchgAR01wsX1_ONJVUrejTf9CrNOe4nmfZuh9tmGj31PMbyuVUSsbubhlG7d5fe-jvij85POAO_uOm-A25caKv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952051386</pqid></control><display><type>article</type><title>Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Li, Taohong ; Cao, Ming ; Liang, Jiankun ; Xie, Xiaoguang ; Du, Guanben</creator><creatorcontrib>Li, Taohong ; Cao, Ming ; Liang, Jiankun ; Xie, Xiaoguang ; Du, Guanben</creatorcontrib><description>The base-catalyzed resorcinol-formaldehyde condensation reactions were theoretically investigated in this study by employing a quantum chemistry method. The condensation reaction includes two steps: (1) formation of the quinonemethide (QM) intermediate from hydroxymethylresorcinol; (2) Michael addition between the quinonemethide and resorcinol anion. The first step is the rate-determining step. Two mechanisms, unimolecular elimination of the conjugate base (E1cb) and water-aided elimination (WAE), were identified for the formation of QM. The hydroxymethylresorcinol anion produces neutral QM while the dianion produces a quinonemethide anion (QMA). The calculated potential energy barriers suggested that the QMA formation is much more favorable. Although resorcinol-formaldehyde and phenol-formaldehyde condensations share a common mechanism, the former would be faster if the QMA participates in condensations. The potential energy barriers for formation of 2-QM, 4-QM, 6-QM, 2-QMA, and 4-QMA were calculated. The results show that the formations of 6-QM and 4-QMA have relatively lower energy barriers. This rationalized previous experimental observations that the 2,4-(2,6-) and 6,6'-(4,4'-) methylene linkages were dominant, whereas the 2,2'-linkage was almost absent. The resorcinol-phenol-formaldehyde co-condensations were also calculated. The cold-setting characteristic of phenol-resorcinol-formaldehyde co-condensed resin can be attributed to participation of resorcinol quinonemethides in condensations.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym9090426</identifier><identifier>PMID: 30965730</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anions ; Barriers ; Chemical reactions ; Cold working ; Condensation ; Formaldehyde ; Linkages ; Mathematical analysis ; Phenols ; Potential energy ; Quantum chemistry</subject><ispartof>Polymers, 2017-09, Vol.9 (9), p.426</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-3b16e7c556c52d9128d272d12fa0ca30c8277361c952236829901484ab7b974f3</citedby><cites>FETCH-LOGICAL-c478t-3b16e7c556c52d9128d272d12fa0ca30c8277361c952236829901484ab7b974f3</cites><orcidid>0000-0002-0970-7964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418521/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418521/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30965730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Taohong</creatorcontrib><creatorcontrib>Cao, Ming</creatorcontrib><creatorcontrib>Liang, Jiankun</creatorcontrib><creatorcontrib>Xie, Xiaoguang</creatorcontrib><creatorcontrib>Du, Guanben</creatorcontrib><title>Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The base-catalyzed resorcinol-formaldehyde condensation reactions were theoretically investigated in this study by employing a quantum chemistry method. The condensation reaction includes two steps: (1) formation of the quinonemethide (QM) intermediate from hydroxymethylresorcinol; (2) Michael addition between the quinonemethide and resorcinol anion. The first step is the rate-determining step. Two mechanisms, unimolecular elimination of the conjugate base (E1cb) and water-aided elimination (WAE), were identified for the formation of QM. The hydroxymethylresorcinol anion produces neutral QM while the dianion produces a quinonemethide anion (QMA). The calculated potential energy barriers suggested that the QMA formation is much more favorable. Although resorcinol-formaldehyde and phenol-formaldehyde condensations share a common mechanism, the former would be faster if the QMA participates in condensations. The potential energy barriers for formation of 2-QM, 4-QM, 6-QM, 2-QMA, and 4-QMA were calculated. The results show that the formations of 6-QM and 4-QMA have relatively lower energy barriers. This rationalized previous experimental observations that the 2,4-(2,6-) and 6,6'-(4,4'-) methylene linkages were dominant, whereas the 2,2'-linkage was almost absent. The resorcinol-phenol-formaldehyde co-condensations were also calculated. The cold-setting characteristic of phenol-resorcinol-formaldehyde co-condensed resin can be attributed to participation of resorcinol quinonemethides in condensations.</description><subject>Anions</subject><subject>Barriers</subject><subject>Chemical reactions</subject><subject>Cold working</subject><subject>Condensation</subject><subject>Formaldehyde</subject><subject>Linkages</subject><subject>Mathematical analysis</subject><subject>Phenols</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc9rFTEQx4MottTePMuCFw-u5tcmGw9CfVgVKorWc5iXzLpbsslrsiusR_9y99FanoJzmWHmw5eZ-RLymNEXQhj6cpfCMhpqqOTqHjnmVItaCkXvH9RH5LSUK7qGbJRi-iE5EtSoRgt6TH59RNdDHMpYpa56AwXrDUwQlp_oqy9YUnZDTKE-T3mE4LFfPFYQffW5x33_f8gmRY-xwDSkuOqA2xflVXVWXfaYMk6Dg1B9nWa_PCIPOggFT2_zCfl2_vZy876--PTuw-bsonZSt1Mttkyhdk2jXMO9Ybz1XHPPeAfUgaCu5VoLxZxpOBeq5cZQJlsJW701WnbihLy-0d3N2xG9wzhlCHaXhxHyYhMM9u9JHHr7Pf2wSrK24WwVeHYrkNP1jGWy41AchgAR01wsX1_ONJVUrejTf9CrNOe4nmfZuh9tmGj31PMbyuVUSsbubhlG7d5fe-jvij85POAO_uOm-A25caKv</recordid><startdate>20170907</startdate><enddate>20170907</enddate><creator>Li, Taohong</creator><creator>Cao, Ming</creator><creator>Liang, Jiankun</creator><creator>Xie, Xiaoguang</creator><creator>Du, Guanben</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0970-7964</orcidid></search><sort><creationdate>20170907</creationdate><title>Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study</title><author>Li, Taohong ; Cao, Ming ; Liang, Jiankun ; Xie, Xiaoguang ; Du, Guanben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3b16e7c556c52d9128d272d12fa0ca30c8277361c952236829901484ab7b974f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anions</topic><topic>Barriers</topic><topic>Chemical reactions</topic><topic>Cold working</topic><topic>Condensation</topic><topic>Formaldehyde</topic><topic>Linkages</topic><topic>Mathematical analysis</topic><topic>Phenols</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Taohong</creatorcontrib><creatorcontrib>Cao, Ming</creatorcontrib><creatorcontrib>Liang, Jiankun</creatorcontrib><creatorcontrib>Xie, Xiaoguang</creatorcontrib><creatorcontrib>Du, Guanben</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Taohong</au><au>Cao, Ming</au><au>Liang, Jiankun</au><au>Xie, Xiaoguang</au><au>Du, Guanben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2017-09-07</date><risdate>2017</risdate><volume>9</volume><issue>9</issue><spage>426</spage><pages>426-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The base-catalyzed resorcinol-formaldehyde condensation reactions were theoretically investigated in this study by employing a quantum chemistry method. The condensation reaction includes two steps: (1) formation of the quinonemethide (QM) intermediate from hydroxymethylresorcinol; (2) Michael addition between the quinonemethide and resorcinol anion. The first step is the rate-determining step. Two mechanisms, unimolecular elimination of the conjugate base (E1cb) and water-aided elimination (WAE), were identified for the formation of QM. The hydroxymethylresorcinol anion produces neutral QM while the dianion produces a quinonemethide anion (QMA). The calculated potential energy barriers suggested that the QMA formation is much more favorable. Although resorcinol-formaldehyde and phenol-formaldehyde condensations share a common mechanism, the former would be faster if the QMA participates in condensations. The potential energy barriers for formation of 2-QM, 4-QM, 6-QM, 2-QMA, and 4-QMA were calculated. The results show that the formations of 6-QM and 4-QMA have relatively lower energy barriers. This rationalized previous experimental observations that the 2,4-(2,6-) and 6,6'-(4,4'-) methylene linkages were dominant, whereas the 2,2'-linkage was almost absent. The resorcinol-phenol-formaldehyde co-condensations were also calculated. The cold-setting characteristic of phenol-resorcinol-formaldehyde co-condensed resin can be attributed to participation of resorcinol quinonemethides in condensations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30965730</pmid><doi>10.3390/polym9090426</doi><orcidid>https://orcid.org/0000-0002-0970-7964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2017-09, Vol.9 (9), p.426
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6418521
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Anions
Barriers
Chemical reactions
Cold working
Condensation
Formaldehyde
Linkages
Mathematical analysis
Phenols
Potential energy
Quantum chemistry
title Mechanism of Base-Catalyzed Resorcinol-Formaldehyde and Phenol-Resorcinol-Formaldehyde Condensation Reactions: A Theoretical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Base-Catalyzed%20Resorcinol-Formaldehyde%20and%20Phenol-Resorcinol-Formaldehyde%20Condensation%20Reactions:%20A%20Theoretical%20Study&rft.jtitle=Polymers&rft.au=Li,%20Taohong&rft.date=2017-09-07&rft.volume=9&rft.issue=9&rft.spage=426&rft.pages=426-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym9090426&rft_dat=%3Cproquest_pubme%3E2207170406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952051386&rft_id=info:pmid/30965730&rfr_iscdi=true