Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis

Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of botany 2019-03, Vol.123 (4), p.691-705
Hauptverfasser: Wany, Aakanksha, Gupta, Alok Kumar, Kumari, Aprajita, Mishra, Sonal, Singh, Namrata, Pandey, Sonika, Vanvari, Rhythm, Igamberdiev, Abir U., Fernie, Alisdair R., Gupta, Kapuganti Jagadis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 4
container_start_page 691
container_title Annals of botany
container_volume 123
creator Wany, Aakanksha
Gupta, Alok Kumar
Kumari, Aprajita
Mishra, Sonal
Singh, Namrata
Pandey, Sonika
Vanvari, Rhythm
Igamberdiev, Abir U.
Fernie, Alisdair R.
Gupta, Kapuganti Jagadis
description Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. Methods We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods. Key Results Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition. Conclusions The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.
doi_str_mv 10.1093/aob/mcy202
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26621486</jstor_id><oup_id>10.1093/aob/mcy202</oup_id><sourcerecordid>26621486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</originalsourceid><addsrcrecordid>eNqFkc2L1jAQh4Mo7rurF-9KL8Ii1M0kTdpehGXxCxa96Dmk6WQ3S9t0k1Tsf29K1xe96Clh5pmHGX6EvAD6FmjLL7TvLkazMsoekUOuiLJhLX1MDpRTUdZcVifkNMY7SimTLTwlJ7nOBTT0QO6_uBR0wmJaUnDJ-alwkx0WnAzGYlyG5OYBC6tN8iHmXuFDj6FIPv9NQB2xwAnDzVqgtc64PLgWy7Qxt-vsfzq9DV0G3bnez9HFZ-SJ1UPE5w_vGfn-4f23q0_l9dePn68ur0tTSZ7K1tZSQs9AagTkpgcLxjJoRF1ZzTuoWVsxQfu-bVF3TLAOhJU1VB2F7b4z8m73zks3Ym9wyocOag5u1GFVXjv1d2dyt-rG_1CygrpqIAvOHwTB3y8YkxpdNDgMekK_RMV4XTG6JfB_FIQAKYXcrG921AQfY0B73Aio2mQqx6n2ODP86s8bjujv_DLwegf8Mv9b9HLn7mLO8UgyKRlUjeS_AJHBtK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155166561</pqid></control><display><type>article</type><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</creator><creatorcontrib>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</creatorcontrib><description>Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. Methods We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods. Key Results Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition. Conclusions The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</description><identifier>ISSN: 0305-7364</identifier><identifier>ISSN: 1095-8290</identifier><identifier>EISSN: 1095-8290</identifier><identifier>DOI: 10.1093/aob/mcy202</identifier><identifier>PMID: 30535180</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>adenosine triphosphate ; ammonium ; anaerobic conditions ; Anaerobiosis ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ecosystems ; energy efficiency ; Energy Metabolism ; enzyme activity ; fermentation ; fluorescence ; gases ; gene expression ; genes ; hypoxia ; lipid peroxidation ; nitrate reductase ; nitrates ; Nitrates - metabolism ; nitric oxide ; nitrogen ; Nutrients - metabolism ; nutrition ; Original ; ORIGINAL ARTICLES ; oxygen ; Oxygen - analysis ; reactive oxygen species ; respiratory rate ; reverse transcriptase polymerase chain reaction ; roots ; seedlings ; transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Annals of botany, 2019-03, Vol.123 (4), p.691-705</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</citedby><cites>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1579,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30535180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wany, Aakanksha</creatorcontrib><creatorcontrib>Gupta, Alok Kumar</creatorcontrib><creatorcontrib>Kumari, Aprajita</creatorcontrib><creatorcontrib>Mishra, Sonal</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Pandey, Sonika</creatorcontrib><creatorcontrib>Vanvari, Rhythm</creatorcontrib><creatorcontrib>Igamberdiev, Abir U.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Gupta, Kapuganti Jagadis</creatorcontrib><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><title>Annals of botany</title><addtitle>Ann Bot</addtitle><description>Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. Methods We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods. Key Results Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition. Conclusions The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</description><subject>adenosine triphosphate</subject><subject>ammonium</subject><subject>anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ecosystems</subject><subject>energy efficiency</subject><subject>Energy Metabolism</subject><subject>enzyme activity</subject><subject>fermentation</subject><subject>fluorescence</subject><subject>gases</subject><subject>gene expression</subject><subject>genes</subject><subject>hypoxia</subject><subject>lipid peroxidation</subject><subject>nitrate reductase</subject><subject>nitrates</subject><subject>Nitrates - metabolism</subject><subject>nitric oxide</subject><subject>nitrogen</subject><subject>Nutrients - metabolism</subject><subject>nutrition</subject><subject>Original</subject><subject>ORIGINAL ARTICLES</subject><subject>oxygen</subject><subject>Oxygen - analysis</subject><subject>reactive oxygen species</subject><subject>respiratory rate</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>roots</subject><subject>seedlings</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0305-7364</issn><issn>1095-8290</issn><issn>1095-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2L1jAQh4Mo7rurF-9KL8Ii1M0kTdpehGXxCxa96Dmk6WQ3S9t0k1Tsf29K1xe96Clh5pmHGX6EvAD6FmjLL7TvLkazMsoekUOuiLJhLX1MDpRTUdZcVifkNMY7SimTLTwlJ7nOBTT0QO6_uBR0wmJaUnDJ-alwkx0WnAzGYlyG5OYBC6tN8iHmXuFDj6FIPv9NQB2xwAnDzVqgtc64PLgWy7Qxt-vsfzq9DV0G3bnez9HFZ-SJ1UPE5w_vGfn-4f23q0_l9dePn68ur0tTSZ7K1tZSQs9AagTkpgcLxjJoRF1ZzTuoWVsxQfu-bVF3TLAOhJU1VB2F7b4z8m73zks3Ym9wyocOag5u1GFVXjv1d2dyt-rG_1CygrpqIAvOHwTB3y8YkxpdNDgMekK_RMV4XTG6JfB_FIQAKYXcrG921AQfY0B73Aio2mQqx6n2ODP86s8bjujv_DLwegf8Mv9b9HLn7mLO8UgyKRlUjeS_AJHBtK0</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Wany, Aakanksha</creator><creator>Gupta, Alok Kumar</creator><creator>Kumari, Aprajita</creator><creator>Mishra, Sonal</creator><creator>Singh, Namrata</creator><creator>Pandey, Sonika</creator><creator>Vanvari, Rhythm</creator><creator>Igamberdiev, Abir U.</creator><creator>Fernie, Alisdair R.</creator><creator>Gupta, Kapuganti Jagadis</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190314</creationdate><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><author>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adenosine triphosphate</topic><topic>ammonium</topic><topic>anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ecosystems</topic><topic>energy efficiency</topic><topic>Energy Metabolism</topic><topic>enzyme activity</topic><topic>fermentation</topic><topic>fluorescence</topic><topic>gases</topic><topic>gene expression</topic><topic>genes</topic><topic>hypoxia</topic><topic>lipid peroxidation</topic><topic>nitrate reductase</topic><topic>nitrates</topic><topic>Nitrates - metabolism</topic><topic>nitric oxide</topic><topic>nitrogen</topic><topic>Nutrients - metabolism</topic><topic>nutrition</topic><topic>Original</topic><topic>ORIGINAL ARTICLES</topic><topic>oxygen</topic><topic>Oxygen - analysis</topic><topic>reactive oxygen species</topic><topic>respiratory rate</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>roots</topic><topic>seedlings</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wany, Aakanksha</creatorcontrib><creatorcontrib>Gupta, Alok Kumar</creatorcontrib><creatorcontrib>Kumari, Aprajita</creatorcontrib><creatorcontrib>Mishra, Sonal</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Pandey, Sonika</creatorcontrib><creatorcontrib>Vanvari, Rhythm</creatorcontrib><creatorcontrib>Igamberdiev, Abir U.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Gupta, Kapuganti Jagadis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wany, Aakanksha</au><au>Gupta, Alok Kumar</au><au>Kumari, Aprajita</au><au>Mishra, Sonal</au><au>Singh, Namrata</au><au>Pandey, Sonika</au><au>Vanvari, Rhythm</au><au>Igamberdiev, Abir U.</au><au>Fernie, Alisdair R.</au><au>Gupta, Kapuganti Jagadis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</atitle><jtitle>Annals of botany</jtitle><addtitle>Ann Bot</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>123</volume><issue>4</issue><spage>691</spage><epage>705</epage><pages>691-705</pages><issn>0305-7364</issn><issn>1095-8290</issn><eissn>1095-8290</eissn><abstract>Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. Methods We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods. Key Results Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition. Conclusions The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>30535180</pmid><doi>10.1093/aob/mcy202</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-7364
ispartof Annals of botany, 2019-03, Vol.123 (4), p.691-705
issn 0305-7364
1095-8290
1095-8290
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417481
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central
subjects adenosine triphosphate
ammonium
anaerobic conditions
Anaerobiosis
Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
ecosystems
energy efficiency
Energy Metabolism
enzyme activity
fermentation
fluorescence
gases
gene expression
genes
hypoxia
lipid peroxidation
nitrate reductase
nitrates
Nitrates - metabolism
nitric oxide
nitrogen
Nutrients - metabolism
nutrition
Original
ORIGINAL ARTICLES
oxygen
Oxygen - analysis
reactive oxygen species
respiratory rate
reverse transcriptase polymerase chain reaction
roots
seedlings
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20nutrition%20influences%20multiple%20factors%20in%20order%20to%20increase%20energy%20efficiency%20under%20hypoxia%20in%20Arabidopsis&rft.jtitle=Annals%20of%20botany&rft.au=Wany,%20Aakanksha&rft.date=2019-03-14&rft.volume=123&rft.issue=4&rft.spage=691&rft.epage=705&rft.pages=691-705&rft.issn=0305-7364&rft.eissn=1095-8290&rft_id=info:doi/10.1093/aob/mcy202&rft_dat=%3Cjstor_pubme%3E26621486%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155166561&rft_id=info:pmid/30535180&rft_jstor_id=26621486&rft_oup_id=10.1093/aob/mcy202&rfr_iscdi=true