Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis
Abstract Background and Aims Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed...
Gespeichert in:
Veröffentlicht in: | Annals of botany 2019-03, Vol.123 (4), p.691-705 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 4 |
container_start_page | 691 |
container_title | Annals of botany |
container_volume | 123 |
creator | Wany, Aakanksha Gupta, Alok Kumar Kumari, Aprajita Mishra, Sonal Singh, Namrata Pandey, Sonika Vanvari, Rhythm Igamberdiev, Abir U. Fernie, Alisdair R. Gupta, Kapuganti Jagadis |
description | Abstract
Background and Aims
Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions.
Methods
We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods.
Key Results
Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition.
Conclusions
The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia. |
doi_str_mv | 10.1093/aob/mcy202 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26621486</jstor_id><oup_id>10.1093/aob/mcy202</oup_id><sourcerecordid>26621486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</originalsourceid><addsrcrecordid>eNqFkc2L1jAQh4Mo7rurF-9KL8Ii1M0kTdpehGXxCxa96Dmk6WQ3S9t0k1Tsf29K1xe96Clh5pmHGX6EvAD6FmjLL7TvLkazMsoekUOuiLJhLX1MDpRTUdZcVifkNMY7SimTLTwlJ7nOBTT0QO6_uBR0wmJaUnDJ-alwkx0WnAzGYlyG5OYBC6tN8iHmXuFDj6FIPv9NQB2xwAnDzVqgtc64PLgWy7Qxt-vsfzq9DV0G3bnez9HFZ-SJ1UPE5w_vGfn-4f23q0_l9dePn68ur0tTSZ7K1tZSQs9AagTkpgcLxjJoRF1ZzTuoWVsxQfu-bVF3TLAOhJU1VB2F7b4z8m73zks3Ym9wyocOag5u1GFVXjv1d2dyt-rG_1CygrpqIAvOHwTB3y8YkxpdNDgMekK_RMV4XTG6JfB_FIQAKYXcrG921AQfY0B73Aio2mQqx6n2ODP86s8bjujv_DLwegf8Mv9b9HLn7mLO8UgyKRlUjeS_AJHBtK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155166561</pqid></control><display><type>article</type><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</creator><creatorcontrib>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</creatorcontrib><description>Abstract
Background and Aims
Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions.
Methods
We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods.
Key Results
Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition.
Conclusions
The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</description><identifier>ISSN: 0305-7364</identifier><identifier>ISSN: 1095-8290</identifier><identifier>EISSN: 1095-8290</identifier><identifier>DOI: 10.1093/aob/mcy202</identifier><identifier>PMID: 30535180</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>adenosine triphosphate ; ammonium ; anaerobic conditions ; Anaerobiosis ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ecosystems ; energy efficiency ; Energy Metabolism ; enzyme activity ; fermentation ; fluorescence ; gases ; gene expression ; genes ; hypoxia ; lipid peroxidation ; nitrate reductase ; nitrates ; Nitrates - metabolism ; nitric oxide ; nitrogen ; Nutrients - metabolism ; nutrition ; Original ; ORIGINAL ARTICLES ; oxygen ; Oxygen - analysis ; reactive oxygen species ; respiratory rate ; reverse transcriptase polymerase chain reaction ; roots ; seedlings ; transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Annals of botany, 2019-03, Vol.123 (4), p.691-705</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</citedby><cites>FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1579,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30535180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wany, Aakanksha</creatorcontrib><creatorcontrib>Gupta, Alok Kumar</creatorcontrib><creatorcontrib>Kumari, Aprajita</creatorcontrib><creatorcontrib>Mishra, Sonal</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Pandey, Sonika</creatorcontrib><creatorcontrib>Vanvari, Rhythm</creatorcontrib><creatorcontrib>Igamberdiev, Abir U.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Gupta, Kapuganti Jagadis</creatorcontrib><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><title>Annals of botany</title><addtitle>Ann Bot</addtitle><description>Abstract
Background and Aims
Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions.
Methods
We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods.
Key Results
Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition.
Conclusions
The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</description><subject>adenosine triphosphate</subject><subject>ammonium</subject><subject>anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ecosystems</subject><subject>energy efficiency</subject><subject>Energy Metabolism</subject><subject>enzyme activity</subject><subject>fermentation</subject><subject>fluorescence</subject><subject>gases</subject><subject>gene expression</subject><subject>genes</subject><subject>hypoxia</subject><subject>lipid peroxidation</subject><subject>nitrate reductase</subject><subject>nitrates</subject><subject>Nitrates - metabolism</subject><subject>nitric oxide</subject><subject>nitrogen</subject><subject>Nutrients - metabolism</subject><subject>nutrition</subject><subject>Original</subject><subject>ORIGINAL ARTICLES</subject><subject>oxygen</subject><subject>Oxygen - analysis</subject><subject>reactive oxygen species</subject><subject>respiratory rate</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>roots</subject><subject>seedlings</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0305-7364</issn><issn>1095-8290</issn><issn>1095-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2L1jAQh4Mo7rurF-9KL8Ii1M0kTdpehGXxCxa96Dmk6WQ3S9t0k1Tsf29K1xe96Clh5pmHGX6EvAD6FmjLL7TvLkazMsoekUOuiLJhLX1MDpRTUdZcVifkNMY7SimTLTwlJ7nOBTT0QO6_uBR0wmJaUnDJ-alwkx0WnAzGYlyG5OYBC6tN8iHmXuFDj6FIPv9NQB2xwAnDzVqgtc64PLgWy7Qxt-vsfzq9DV0G3bnez9HFZ-SJ1UPE5w_vGfn-4f23q0_l9dePn68ur0tTSZ7K1tZSQs9AagTkpgcLxjJoRF1ZzTuoWVsxQfu-bVF3TLAOhJU1VB2F7b4z8m73zks3Ym9wyocOag5u1GFVXjv1d2dyt-rG_1CygrpqIAvOHwTB3y8YkxpdNDgMekK_RMV4XTG6JfB_FIQAKYXcrG921AQfY0B73Aio2mQqx6n2ODP86s8bjujv_DLwegf8Mv9b9HLn7mLO8UgyKRlUjeS_AJHBtK0</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Wany, Aakanksha</creator><creator>Gupta, Alok Kumar</creator><creator>Kumari, Aprajita</creator><creator>Mishra, Sonal</creator><creator>Singh, Namrata</creator><creator>Pandey, Sonika</creator><creator>Vanvari, Rhythm</creator><creator>Igamberdiev, Abir U.</creator><creator>Fernie, Alisdair R.</creator><creator>Gupta, Kapuganti Jagadis</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190314</creationdate><title>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</title><author>Wany, Aakanksha ; Gupta, Alok Kumar ; Kumari, Aprajita ; Mishra, Sonal ; Singh, Namrata ; Pandey, Sonika ; Vanvari, Rhythm ; Igamberdiev, Abir U. ; Fernie, Alisdair R. ; Gupta, Kapuganti Jagadis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-9f7661d216ae1e3cd1f1cf218574fa3b17294250dd99eab252b15f6714b013053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adenosine triphosphate</topic><topic>ammonium</topic><topic>anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ecosystems</topic><topic>energy efficiency</topic><topic>Energy Metabolism</topic><topic>enzyme activity</topic><topic>fermentation</topic><topic>fluorescence</topic><topic>gases</topic><topic>gene expression</topic><topic>genes</topic><topic>hypoxia</topic><topic>lipid peroxidation</topic><topic>nitrate reductase</topic><topic>nitrates</topic><topic>Nitrates - metabolism</topic><topic>nitric oxide</topic><topic>nitrogen</topic><topic>Nutrients - metabolism</topic><topic>nutrition</topic><topic>Original</topic><topic>ORIGINAL ARTICLES</topic><topic>oxygen</topic><topic>Oxygen - analysis</topic><topic>reactive oxygen species</topic><topic>respiratory rate</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>roots</topic><topic>seedlings</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wany, Aakanksha</creatorcontrib><creatorcontrib>Gupta, Alok Kumar</creatorcontrib><creatorcontrib>Kumari, Aprajita</creatorcontrib><creatorcontrib>Mishra, Sonal</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Pandey, Sonika</creatorcontrib><creatorcontrib>Vanvari, Rhythm</creatorcontrib><creatorcontrib>Igamberdiev, Abir U.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Gupta, Kapuganti Jagadis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wany, Aakanksha</au><au>Gupta, Alok Kumar</au><au>Kumari, Aprajita</au><au>Mishra, Sonal</au><au>Singh, Namrata</au><au>Pandey, Sonika</au><au>Vanvari, Rhythm</au><au>Igamberdiev, Abir U.</au><au>Fernie, Alisdair R.</au><au>Gupta, Kapuganti Jagadis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis</atitle><jtitle>Annals of botany</jtitle><addtitle>Ann Bot</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>123</volume><issue>4</issue><spage>691</spage><epage>705</epage><pages>691-705</pages><issn>0305-7364</issn><issn>1095-8290</issn><eissn>1095-8290</eissn><abstract>Abstract
Background and Aims
Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3–) or ammonium (NH4+). Recent studies revealed that NO3– nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3– or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions.
Methods
We used Arabidopsis plants grown on Hoagland medium with either NO3– or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin–nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription–PCR methods.
Key Results
Under NO3– nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3– nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3– nutrition.
Conclusions
The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>30535180</pmid><doi>10.1093/aob/mcy202</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-7364 |
ispartof | Annals of botany, 2019-03, Vol.123 (4), p.691-705 |
issn | 0305-7364 1095-8290 1095-8290 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6417481 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central |
subjects | adenosine triphosphate ammonium anaerobic conditions Anaerobiosis Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism ecosystems energy efficiency Energy Metabolism enzyme activity fermentation fluorescence gases gene expression genes hypoxia lipid peroxidation nitrate reductase nitrates Nitrates - metabolism nitric oxide nitrogen Nutrients - metabolism nutrition Original ORIGINAL ARTICLES oxygen Oxygen - analysis reactive oxygen species respiratory rate reverse transcriptase polymerase chain reaction roots seedlings transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20nutrition%20influences%20multiple%20factors%20in%20order%20to%20increase%20energy%20efficiency%20under%20hypoxia%20in%20Arabidopsis&rft.jtitle=Annals%20of%20botany&rft.au=Wany,%20Aakanksha&rft.date=2019-03-14&rft.volume=123&rft.issue=4&rft.spage=691&rft.epage=705&rft.pages=691-705&rft.issn=0305-7364&rft.eissn=1095-8290&rft_id=info:doi/10.1093/aob/mcy202&rft_dat=%3Cjstor_pubme%3E26621486%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155166561&rft_id=info:pmid/30535180&rft_jstor_id=26621486&rft_oup_id=10.1093/aob/mcy202&rfr_iscdi=true |