Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development

Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-03, Vol.9 (1), p.4319, Article 4319
Hauptverfasser: Völkel, Pamela, Bary, Aurélie, Raby, Ludivine, Chapart, Anaïs, Dupret, Barbara, Le Bourhis, Xuefen, Angrand, Pierre-Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4319
container_title Scientific reports
container_volume 9
creator Völkel, Pamela
Bary, Aurélie
Raby, Ludivine
Chapart, Anaïs
Dupret, Barbara
Le Bourhis, Xuefen
Angrand, Pierre-Olivier
description Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2 -deficient larvae.
doi_str_mv 10.1038/s41598-019-40738-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190995273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</originalsourceid><addsrcrecordid>eNp9UV1rFDEUDaLYsvYP-CABn3wYvfmaTF6EUqoVFnzR55Bk7uym7E62ycyC_fVNO7VWHwwhN5x7zrlcDiFvGXxkILpPRTJlugaYaSRo0TXmBTnlIFXDBecvn_1PyFkp11CP4kYy85qcCOhaLQ2cEnd5u2XU5Viw0CGnPa0ApxsckfbzYReDm2IaqZ8nGqdKmcfwAMRCxzTRjDdzzNjTIWV6iz67IZYt7fGIu3TY4zi9Ia8Gtyt49lhX5OeXyx8XV836-9dvF-frJiippsZ7BKY0ggcwnYSAKjAvoBVa68FJpzsvuqHvHbQtCu97zeujWjkEiSKIFfm8-B5mv8c-1NHZ7ewhx73Lv2xy0f7dGePWbtLRtpK1ot4V-bAYbP-RXZ2v7T0GUkrDtD6yyn3_OCynmxnLZK_TnMe6n-XMgDGKa1FZfGGFnErJODzZMrD3KdolRVtTtA8pWlNF757v8ST5nVkliIVQamvcYP4z-z-2d0cEqR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190995273</pqid></control><display><type>article</type><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</creator><creatorcontrib>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</creatorcontrib><description>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2 -deficient larvae.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-40738-9</identifier><identifier>PMID: 30867490</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 42/70 ; 631/136/334/1874/763 ; 631/208/176/2016 ; 631/208/726/1912 ; 64/116 ; Animals ; Danio rerio ; Deficient mutant ; Developmental stages ; Embryos ; Enhancer of Zeste Homolog 2 Protein - deficiency ; Enhancer of Zeste Homolog 2 Protein - genetics ; Enhancer of Zeste Homolog 2 Protein - physiology ; EZH2 gene ; Gene Duplication ; Homeostasis ; Humanities and Social Sciences ; Hybridization ; Larvae ; Lethality ; Life Sciences ; Longevity ; multidisciplinary ; Polycomb group proteins ; Polycomb Repressive Complex 2 - deficiency ; Polycomb Repressive Complex 2 - genetics ; Polycomb Repressive Complex 2 - physiology ; Polymerase chain reaction ; Science ; Science (multidisciplinary) ; Stem cells ; Zebrafish ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - growth &amp; development ; Zebrafish Proteins - genetics ; Zebrafish Proteins - physiology</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.4319, Article 4319</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</citedby><cites>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</cites><orcidid>0000-0002-9509-4796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30867490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04449177$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Völkel, Pamela</creatorcontrib><creatorcontrib>Bary, Aurélie</creatorcontrib><creatorcontrib>Raby, Ludivine</creatorcontrib><creatorcontrib>Chapart, Anaïs</creatorcontrib><creatorcontrib>Dupret, Barbara</creatorcontrib><creatorcontrib>Le Bourhis, Xuefen</creatorcontrib><creatorcontrib>Angrand, Pierre-Olivier</creatorcontrib><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2 -deficient larvae.</description><subject>38/39</subject><subject>42/70</subject><subject>631/136/334/1874/763</subject><subject>631/208/176/2016</subject><subject>631/208/726/1912</subject><subject>64/116</subject><subject>Animals</subject><subject>Danio rerio</subject><subject>Deficient mutant</subject><subject>Developmental stages</subject><subject>Embryos</subject><subject>Enhancer of Zeste Homolog 2 Protein - deficiency</subject><subject>Enhancer of Zeste Homolog 2 Protein - genetics</subject><subject>Enhancer of Zeste Homolog 2 Protein - physiology</subject><subject>EZH2 gene</subject><subject>Gene Duplication</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Larvae</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Longevity</subject><subject>multidisciplinary</subject><subject>Polycomb group proteins</subject><subject>Polycomb Repressive Complex 2 - deficiency</subject><subject>Polycomb Repressive Complex 2 - genetics</subject><subject>Polycomb Repressive Complex 2 - physiology</subject><subject>Polymerase chain reaction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth &amp; development</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UV1rFDEUDaLYsvYP-CABn3wYvfmaTF6EUqoVFnzR55Bk7uym7E62ycyC_fVNO7VWHwwhN5x7zrlcDiFvGXxkILpPRTJlugaYaSRo0TXmBTnlIFXDBecvn_1PyFkp11CP4kYy85qcCOhaLQ2cEnd5u2XU5Viw0CGnPa0ApxsckfbzYReDm2IaqZ8nGqdKmcfwAMRCxzTRjDdzzNjTIWV6iz67IZYt7fGIu3TY4zi9Ia8Gtyt49lhX5OeXyx8XV836-9dvF-frJiippsZ7BKY0ggcwnYSAKjAvoBVa68FJpzsvuqHvHbQtCu97zeujWjkEiSKIFfm8-B5mv8c-1NHZ7ewhx73Lv2xy0f7dGePWbtLRtpK1ot4V-bAYbP-RXZ2v7T0GUkrDtD6yyn3_OCynmxnLZK_TnMe6n-XMgDGKa1FZfGGFnErJODzZMrD3KdolRVtTtA8pWlNF757v8ST5nVkliIVQamvcYP4z-z-2d0cEqR8</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Völkel, Pamela</creator><creator>Bary, Aurélie</creator><creator>Raby, Ludivine</creator><creator>Chapart, Anaïs</creator><creator>Dupret, Barbara</creator><creator>Le Bourhis, Xuefen</creator><creator>Angrand, Pierre-Olivier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9509-4796</orcidid></search><sort><creationdate>20190313</creationdate><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><author>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/39</topic><topic>42/70</topic><topic>631/136/334/1874/763</topic><topic>631/208/176/2016</topic><topic>631/208/726/1912</topic><topic>64/116</topic><topic>Animals</topic><topic>Danio rerio</topic><topic>Deficient mutant</topic><topic>Developmental stages</topic><topic>Embryos</topic><topic>Enhancer of Zeste Homolog 2 Protein - deficiency</topic><topic>Enhancer of Zeste Homolog 2 Protein - genetics</topic><topic>Enhancer of Zeste Homolog 2 Protein - physiology</topic><topic>EZH2 gene</topic><topic>Gene Duplication</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Larvae</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Longevity</topic><topic>multidisciplinary</topic><topic>Polycomb group proteins</topic><topic>Polycomb Repressive Complex 2 - deficiency</topic><topic>Polycomb Repressive Complex 2 - genetics</topic><topic>Polycomb Repressive Complex 2 - physiology</topic><topic>Polymerase chain reaction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth &amp; development</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Völkel, Pamela</creatorcontrib><creatorcontrib>Bary, Aurélie</creatorcontrib><creatorcontrib>Raby, Ludivine</creatorcontrib><creatorcontrib>Chapart, Anaïs</creatorcontrib><creatorcontrib>Dupret, Barbara</creatorcontrib><creatorcontrib>Le Bourhis, Xuefen</creatorcontrib><creatorcontrib>Angrand, Pierre-Olivier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Völkel, Pamela</au><au>Bary, Aurélie</au><au>Raby, Ludivine</au><au>Chapart, Anaïs</au><au>Dupret, Barbara</au><au>Le Bourhis, Xuefen</au><au>Angrand, Pierre-Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>4319</spage><pages>4319-</pages><artnum>4319</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2 -deficient larvae.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30867490</pmid><doi>10.1038/s41598-019-40738-9</doi><orcidid>https://orcid.org/0000-0002-9509-4796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-03, Vol.9 (1), p.4319, Article 4319
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416316
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 38/39
42/70
631/136/334/1874/763
631/208/176/2016
631/208/726/1912
64/116
Animals
Danio rerio
Deficient mutant
Developmental stages
Embryos
Enhancer of Zeste Homolog 2 Protein - deficiency
Enhancer of Zeste Homolog 2 Protein - genetics
Enhancer of Zeste Homolog 2 Protein - physiology
EZH2 gene
Gene Duplication
Homeostasis
Humanities and Social Sciences
Hybridization
Larvae
Lethality
Life Sciences
Longevity
multidisciplinary
Polycomb group proteins
Polycomb Repressive Complex 2 - deficiency
Polycomb Repressive Complex 2 - genetics
Polycomb Repressive Complex 2 - physiology
Polymerase chain reaction
Science
Science (multidisciplinary)
Stem cells
Zebrafish
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - growth & development
Zebrafish Proteins - genetics
Zebrafish Proteins - physiology
title Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ezh1%20arises%20from%20Ezh2%20gene%20duplication%20but%20its%20function%20is%20not%20required%20for%20zebrafish%20development&rft.jtitle=Scientific%20reports&rft.au=V%C3%B6lkel,%20Pamela&rft.date=2019-03-13&rft.volume=9&rft.issue=1&rft.spage=4319&rft.pages=4319-&rft.artnum=4319&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-40738-9&rft_dat=%3Cproquest_pubme%3E2190995273%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190995273&rft_id=info:pmid/30867490&rfr_iscdi=true