Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development
Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila , the PRC2 catalytic subunit is the single protein...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-03, Vol.9 (1), p.4319, Article 4319 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 4319 |
container_title | Scientific reports |
container_volume | 9 |
creator | Völkel, Pamela Bary, Aurélie Raby, Ludivine Chapart, Anaïs Dupret, Barbara Le Bourhis, Xuefen Angrand, Pierre-Olivier |
description | Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In
Drosophila
, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that
Ezh1
arose from an
Ezh2
gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using
in situ
hybridization and RT-PCR followed by the sequencing of the amplicon revealed that
ezh1
mRNAs are maternally deposited. Then,
ezh1
transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of
ezh1
in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of
ezh1
function is responsible for the earlier death of
ezh2
mutant larvae indicating that
ezh1
contributes to zebrafish development in absence of zygotic
ezh2
gene function. Furthermore, we show that presence of
ezh1
transcripts from the maternal origin accounts for the delayed lethality of
ezh2
-deficient larvae. |
doi_str_mv | 10.1038/s41598-019-40738-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190995273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</originalsourceid><addsrcrecordid>eNp9UV1rFDEUDaLYsvYP-CABn3wYvfmaTF6EUqoVFnzR55Bk7uym7E62ycyC_fVNO7VWHwwhN5x7zrlcDiFvGXxkILpPRTJlugaYaSRo0TXmBTnlIFXDBecvn_1PyFkp11CP4kYy85qcCOhaLQ2cEnd5u2XU5Viw0CGnPa0ApxsckfbzYReDm2IaqZ8nGqdKmcfwAMRCxzTRjDdzzNjTIWV6iz67IZYt7fGIu3TY4zi9Ia8Gtyt49lhX5OeXyx8XV836-9dvF-frJiippsZ7BKY0ggcwnYSAKjAvoBVa68FJpzsvuqHvHbQtCu97zeujWjkEiSKIFfm8-B5mv8c-1NHZ7ewhx73Lv2xy0f7dGePWbtLRtpK1ot4V-bAYbP-RXZ2v7T0GUkrDtD6yyn3_OCynmxnLZK_TnMe6n-XMgDGKa1FZfGGFnErJODzZMrD3KdolRVtTtA8pWlNF757v8ST5nVkliIVQamvcYP4z-z-2d0cEqR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190995273</pqid></control><display><type>article</type><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</creator><creatorcontrib>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</creatorcontrib><description>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In
Drosophila
, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that
Ezh1
arose from an
Ezh2
gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using
in situ
hybridization and RT-PCR followed by the sequencing of the amplicon revealed that
ezh1
mRNAs are maternally deposited. Then,
ezh1
transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of
ezh1
in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of
ezh1
function is responsible for the earlier death of
ezh2
mutant larvae indicating that
ezh1
contributes to zebrafish development in absence of zygotic
ezh2
gene function. Furthermore, we show that presence of
ezh1
transcripts from the maternal origin accounts for the delayed lethality of
ezh2
-deficient larvae.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-40738-9</identifier><identifier>PMID: 30867490</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 42/70 ; 631/136/334/1874/763 ; 631/208/176/2016 ; 631/208/726/1912 ; 64/116 ; Animals ; Danio rerio ; Deficient mutant ; Developmental stages ; Embryos ; Enhancer of Zeste Homolog 2 Protein - deficiency ; Enhancer of Zeste Homolog 2 Protein - genetics ; Enhancer of Zeste Homolog 2 Protein - physiology ; EZH2 gene ; Gene Duplication ; Homeostasis ; Humanities and Social Sciences ; Hybridization ; Larvae ; Lethality ; Life Sciences ; Longevity ; multidisciplinary ; Polycomb group proteins ; Polycomb Repressive Complex 2 - deficiency ; Polycomb Repressive Complex 2 - genetics ; Polycomb Repressive Complex 2 - physiology ; Polymerase chain reaction ; Science ; Science (multidisciplinary) ; Stem cells ; Zebrafish ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - growth & development ; Zebrafish Proteins - genetics ; Zebrafish Proteins - physiology</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.4319, Article 4319</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</citedby><cites>FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</cites><orcidid>0000-0002-9509-4796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30867490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04449177$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Völkel, Pamela</creatorcontrib><creatorcontrib>Bary, Aurélie</creatorcontrib><creatorcontrib>Raby, Ludivine</creatorcontrib><creatorcontrib>Chapart, Anaïs</creatorcontrib><creatorcontrib>Dupret, Barbara</creatorcontrib><creatorcontrib>Le Bourhis, Xuefen</creatorcontrib><creatorcontrib>Angrand, Pierre-Olivier</creatorcontrib><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In
Drosophila
, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that
Ezh1
arose from an
Ezh2
gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using
in situ
hybridization and RT-PCR followed by the sequencing of the amplicon revealed that
ezh1
mRNAs are maternally deposited. Then,
ezh1
transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of
ezh1
in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of
ezh1
function is responsible for the earlier death of
ezh2
mutant larvae indicating that
ezh1
contributes to zebrafish development in absence of zygotic
ezh2
gene function. Furthermore, we show that presence of
ezh1
transcripts from the maternal origin accounts for the delayed lethality of
ezh2
-deficient larvae.</description><subject>38/39</subject><subject>42/70</subject><subject>631/136/334/1874/763</subject><subject>631/208/176/2016</subject><subject>631/208/726/1912</subject><subject>64/116</subject><subject>Animals</subject><subject>Danio rerio</subject><subject>Deficient mutant</subject><subject>Developmental stages</subject><subject>Embryos</subject><subject>Enhancer of Zeste Homolog 2 Protein - deficiency</subject><subject>Enhancer of Zeste Homolog 2 Protein - genetics</subject><subject>Enhancer of Zeste Homolog 2 Protein - physiology</subject><subject>EZH2 gene</subject><subject>Gene Duplication</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Larvae</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Longevity</subject><subject>multidisciplinary</subject><subject>Polycomb group proteins</subject><subject>Polycomb Repressive Complex 2 - deficiency</subject><subject>Polycomb Repressive Complex 2 - genetics</subject><subject>Polycomb Repressive Complex 2 - physiology</subject><subject>Polymerase chain reaction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth & development</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UV1rFDEUDaLYsvYP-CABn3wYvfmaTF6EUqoVFnzR55Bk7uym7E62ycyC_fVNO7VWHwwhN5x7zrlcDiFvGXxkILpPRTJlugaYaSRo0TXmBTnlIFXDBecvn_1PyFkp11CP4kYy85qcCOhaLQ2cEnd5u2XU5Viw0CGnPa0ApxsckfbzYReDm2IaqZ8nGqdKmcfwAMRCxzTRjDdzzNjTIWV6iz67IZYt7fGIu3TY4zi9Ia8Gtyt49lhX5OeXyx8XV836-9dvF-frJiippsZ7BKY0ggcwnYSAKjAvoBVa68FJpzsvuqHvHbQtCu97zeujWjkEiSKIFfm8-B5mv8c-1NHZ7ewhx73Lv2xy0f7dGePWbtLRtpK1ot4V-bAYbP-RXZ2v7T0GUkrDtD6yyn3_OCynmxnLZK_TnMe6n-XMgDGKa1FZfGGFnErJODzZMrD3KdolRVtTtA8pWlNF757v8ST5nVkliIVQamvcYP4z-z-2d0cEqR8</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Völkel, Pamela</creator><creator>Bary, Aurélie</creator><creator>Raby, Ludivine</creator><creator>Chapart, Anaïs</creator><creator>Dupret, Barbara</creator><creator>Le Bourhis, Xuefen</creator><creator>Angrand, Pierre-Olivier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9509-4796</orcidid></search><sort><creationdate>20190313</creationdate><title>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</title><author>Völkel, Pamela ; Bary, Aurélie ; Raby, Ludivine ; Chapart, Anaïs ; Dupret, Barbara ; Le Bourhis, Xuefen ; Angrand, Pierre-Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-bbe0157e0b009840ce5c1b3063777fa4a78b38fdda066e3bbd72bbd564fc4e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/39</topic><topic>42/70</topic><topic>631/136/334/1874/763</topic><topic>631/208/176/2016</topic><topic>631/208/726/1912</topic><topic>64/116</topic><topic>Animals</topic><topic>Danio rerio</topic><topic>Deficient mutant</topic><topic>Developmental stages</topic><topic>Embryos</topic><topic>Enhancer of Zeste Homolog 2 Protein - deficiency</topic><topic>Enhancer of Zeste Homolog 2 Protein - genetics</topic><topic>Enhancer of Zeste Homolog 2 Protein - physiology</topic><topic>EZH2 gene</topic><topic>Gene Duplication</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Larvae</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Longevity</topic><topic>multidisciplinary</topic><topic>Polycomb group proteins</topic><topic>Polycomb Repressive Complex 2 - deficiency</topic><topic>Polycomb Repressive Complex 2 - genetics</topic><topic>Polycomb Repressive Complex 2 - physiology</topic><topic>Polymerase chain reaction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth & development</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Völkel, Pamela</creatorcontrib><creatorcontrib>Bary, Aurélie</creatorcontrib><creatorcontrib>Raby, Ludivine</creatorcontrib><creatorcontrib>Chapart, Anaïs</creatorcontrib><creatorcontrib>Dupret, Barbara</creatorcontrib><creatorcontrib>Le Bourhis, Xuefen</creatorcontrib><creatorcontrib>Angrand, Pierre-Olivier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Völkel, Pamela</au><au>Bary, Aurélie</au><au>Raby, Ludivine</au><au>Chapart, Anaïs</au><au>Dupret, Barbara</au><au>Le Bourhis, Xuefen</au><au>Angrand, Pierre-Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>4319</spage><pages>4319-</pages><artnum>4319</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In
Drosophila
, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that
Ezh1
arose from an
Ezh2
gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using
in situ
hybridization and RT-PCR followed by the sequencing of the amplicon revealed that
ezh1
mRNAs are maternally deposited. Then,
ezh1
transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of
ezh1
in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of
ezh1
function is responsible for the earlier death of
ezh2
mutant larvae indicating that
ezh1
contributes to zebrafish development in absence of zygotic
ezh2
gene function. Furthermore, we show that presence of
ezh1
transcripts from the maternal origin accounts for the delayed lethality of
ezh2
-deficient larvae.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30867490</pmid><doi>10.1038/s41598-019-40738-9</doi><orcidid>https://orcid.org/0000-0002-9509-4796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.4319, Article 4319 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416316 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 38/39 42/70 631/136/334/1874/763 631/208/176/2016 631/208/726/1912 64/116 Animals Danio rerio Deficient mutant Developmental stages Embryos Enhancer of Zeste Homolog 2 Protein - deficiency Enhancer of Zeste Homolog 2 Protein - genetics Enhancer of Zeste Homolog 2 Protein - physiology EZH2 gene Gene Duplication Homeostasis Humanities and Social Sciences Hybridization Larvae Lethality Life Sciences Longevity multidisciplinary Polycomb group proteins Polycomb Repressive Complex 2 - deficiency Polycomb Repressive Complex 2 - genetics Polycomb Repressive Complex 2 - physiology Polymerase chain reaction Science Science (multidisciplinary) Stem cells Zebrafish Zebrafish - embryology Zebrafish - genetics Zebrafish - growth & development Zebrafish Proteins - genetics Zebrafish Proteins - physiology |
title | Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ezh1%20arises%20from%20Ezh2%20gene%20duplication%20but%20its%20function%20is%20not%20required%20for%20zebrafish%20development&rft.jtitle=Scientific%20reports&rft.au=V%C3%B6lkel,%20Pamela&rft.date=2019-03-13&rft.volume=9&rft.issue=1&rft.spage=4319&rft.pages=4319-&rft.artnum=4319&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-40738-9&rft_dat=%3Cproquest_pubme%3E2190995273%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190995273&rft_id=info:pmid/30867490&rfr_iscdi=true |