Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior

In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2018-03, Vol.10 (3), p.279
Hauptverfasser: Rodríguez-Méndez, Itzia, Fernández-Gutiérrez, Mar, Rodríguez-Navarrete, Amairany, Rosales-Ibáñez, Raúl, Benito-Garzón, Lorena, Vázquez-Lasa, Blanca, San Román, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 279
container_title Polymers
container_volume 10
creator Rodríguez-Méndez, Itzia
Fernández-Gutiérrez, Mar
Rodríguez-Navarrete, Amairany
Rosales-Ibáñez, Raúl
Benito-Garzón, Lorena
Vázquez-Lasa, Blanca
San Román, Julio
description In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr) containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone) (PCL). These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63) and human bone marrow mesenchymal stem cells (hBMSCs) for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245%) of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.
doi_str_mv 10.3390/polym10030279
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6415099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207171093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f6055263615a93df5c463a4c09ec38f6810fb5c6fef1232b9d1c837c247e4653</originalsourceid><addsrcrecordid>eNpdkc1OGzEUhS3UqiDKsltkiU1YDPHfeOINUomgREIClahby_HYxGjim9ozkVjwWLwGz1SjAIJ6c23dT-ee64PQD0pOOFdkvIbuYUUJ4YQ1agftMdLwSnBJvny476KDnO9JOaKWkjbf0C4nSkpOxR56PAtgbB82Dt-m0Wx2PJ4uQw_ZxPFNER89P1XWrBN0BYLojvGtNd5D12bsIeFpMjGANzaYDs9DzoPDv92diy6ZPkA8wbOI_4Q-ATax3T42gM_c0mwCpO_oqzdddgevdR_NL87n08vq6vrXbPrzqrKC1n3lJalrJrmktVG89bUVkhthiXKWT7ycUOIXtZXeeco4W6iW2glvLBONE7Lm--h0K7seFivXWhf7ZDq9TmFl0oMGE_TnTgxLfQcbLct4olQRGL0KJPg7uNzrVcjWdZ2JDoasWfls2lCieEGP_kPvYUixbKcZYVIIQtWLo2pL2QQ5J-ffzVCiX6LVn6It_OHHDd7ptyD5P65WoJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026440195</pqid></control><display><type>article</type><title>Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Rodríguez-Méndez, Itzia ; Fernández-Gutiérrez, Mar ; Rodríguez-Navarrete, Amairany ; Rosales-Ibáñez, Raúl ; Benito-Garzón, Lorena ; Vázquez-Lasa, Blanca ; San Román, Julio</creator><creatorcontrib>Rodríguez-Méndez, Itzia ; Fernández-Gutiérrez, Mar ; Rodríguez-Navarrete, Amairany ; Rosales-Ibáñez, Raúl ; Benito-Garzón, Lorena ; Vázquez-Lasa, Blanca ; San Román, Julio</creatorcontrib><description>In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr) containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone) (PCL). These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63) and human bone marrow mesenchymal stem cells (hBMSCs) for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245%) of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym10030279</identifier><identifier>PMID: 30966314</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biocompatibility ; Biodegradability ; Biomedical materials ; Bone marrow ; Chemical properties ; Chitosan ; Crosslinking ; Dimensional stability ; Microparticles ; Osteoblasts ; Polycaprolactone ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Strontium ; Substitute bone ; Swelling ; Tissue engineering ; Toxicity</subject><ispartof>Polymers, 2018-03, Vol.10 (3), p.279</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f6055263615a93df5c463a4c09ec38f6810fb5c6fef1232b9d1c837c247e4653</citedby><cites>FETCH-LOGICAL-c415t-f6055263615a93df5c463a4c09ec38f6810fb5c6fef1232b9d1c837c247e4653</cites><orcidid>0000-0002-4413-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30966314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Méndez, Itzia</creatorcontrib><creatorcontrib>Fernández-Gutiérrez, Mar</creatorcontrib><creatorcontrib>Rodríguez-Navarrete, Amairany</creatorcontrib><creatorcontrib>Rosales-Ibáñez, Raúl</creatorcontrib><creatorcontrib>Benito-Garzón, Lorena</creatorcontrib><creatorcontrib>Vázquez-Lasa, Blanca</creatorcontrib><creatorcontrib>San Román, Julio</creatorcontrib><title>Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr) containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone) (PCL). These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63) and human bone marrow mesenchymal stem cells (hBMSCs) for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245%) of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Chemical properties</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>Dimensional stability</subject><subject>Microparticles</subject><subject>Osteoblasts</subject><subject>Polycaprolactone</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Strontium</subject><subject>Substitute bone</subject><subject>Swelling</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1OGzEUhS3UqiDKsltkiU1YDPHfeOINUomgREIClahby_HYxGjim9ozkVjwWLwGz1SjAIJ6c23dT-ee64PQD0pOOFdkvIbuYUUJ4YQ1agftMdLwSnBJvny476KDnO9JOaKWkjbf0C4nSkpOxR56PAtgbB82Dt-m0Wx2PJ4uQw_ZxPFNER89P1XWrBN0BYLojvGtNd5D12bsIeFpMjGANzaYDs9DzoPDv92diy6ZPkA8wbOI_4Q-ATax3T42gM_c0mwCpO_oqzdddgevdR_NL87n08vq6vrXbPrzqrKC1n3lJalrJrmktVG89bUVkhthiXKWT7ycUOIXtZXeeco4W6iW2glvLBONE7Lm--h0K7seFivXWhf7ZDq9TmFl0oMGE_TnTgxLfQcbLct4olQRGL0KJPg7uNzrVcjWdZ2JDoasWfls2lCieEGP_kPvYUixbKcZYVIIQtWLo2pL2QQ5J-ffzVCiX6LVn6It_OHHDd7ptyD5P65WoJo</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Rodríguez-Méndez, Itzia</creator><creator>Fernández-Gutiérrez, Mar</creator><creator>Rodríguez-Navarrete, Amairany</creator><creator>Rosales-Ibáñez, Raúl</creator><creator>Benito-Garzón, Lorena</creator><creator>Vázquez-Lasa, Blanca</creator><creator>San Román, Julio</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4413-388X</orcidid></search><sort><creationdate>20180307</creationdate><title>Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior</title><author>Rodríguez-Méndez, Itzia ; Fernández-Gutiérrez, Mar ; Rodríguez-Navarrete, Amairany ; Rosales-Ibáñez, Raúl ; Benito-Garzón, Lorena ; Vázquez-Lasa, Blanca ; San Román, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f6055263615a93df5c463a4c09ec38f6810fb5c6fef1232b9d1c837c247e4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Chemical properties</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>Dimensional stability</topic><topic>Microparticles</topic><topic>Osteoblasts</topic><topic>Polycaprolactone</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Strontium</topic><topic>Substitute bone</topic><topic>Swelling</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Méndez, Itzia</creatorcontrib><creatorcontrib>Fernández-Gutiérrez, Mar</creatorcontrib><creatorcontrib>Rodríguez-Navarrete, Amairany</creatorcontrib><creatorcontrib>Rosales-Ibáñez, Raúl</creatorcontrib><creatorcontrib>Benito-Garzón, Lorena</creatorcontrib><creatorcontrib>Vázquez-Lasa, Blanca</creatorcontrib><creatorcontrib>San Román, Julio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Méndez, Itzia</au><au>Fernández-Gutiérrez, Mar</au><au>Rodríguez-Navarrete, Amairany</au><au>Rosales-Ibáñez, Raúl</au><au>Benito-Garzón, Lorena</au><au>Vázquez-Lasa, Blanca</au><au>San Román, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>279</spage><pages>279-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr) containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone) (PCL). These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63) and human bone marrow mesenchymal stem cells (hBMSCs) for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245%) of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30966314</pmid><doi>10.3390/polym10030279</doi><orcidid>https://orcid.org/0000-0002-4413-388X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2018-03, Vol.10 (3), p.279
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6415099
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Biocompatibility
Biodegradability
Biomedical materials
Bone marrow
Chemical properties
Chitosan
Crosslinking
Dimensional stability
Microparticles
Osteoblasts
Polycaprolactone
Regeneration (physiology)
Scaffolds
Stem cells
Strontium
Substitute bone
Swelling
Tissue engineering
Toxicity
title Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20Sr(II)/Chitosan/Poly(%CE%B5-caprolactone)%20Scaffolds%20for%20Craniofacial%20Tissue%20Regeneration.%20In%20Vitro%20and%20In%20Vivo%20Behavior&rft.jtitle=Polymers&rft.au=Rodr%C3%ADguez-M%C3%A9ndez,%20Itzia&rft.date=2018-03-07&rft.volume=10&rft.issue=3&rft.spage=279&rft.pages=279-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym10030279&rft_dat=%3Cproquest_pubme%3E2207171093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026440195&rft_id=info:pmid/30966314&rfr_iscdi=true