Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-03, Vol.9 (1), p.4179-4179, Article 4179 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4179 |
---|---|
container_issue | 1 |
container_start_page | 4179 |
container_title | Scientific reports |
container_volume | 9 |
creator | Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How |
description | Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD
+
ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency. |
doi_str_mv | 10.1038/s41598-019-39627-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6414645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190463393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-7464a824e8a5d4c788a8e7dda50b318719fb9996a13468a5ba3af44ba19511773</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAlti0UgP-y483SFVFKdJIsIC1dePczLhK7MH2jDTPwsvikDKULvDCtuzvnOtrnaJ4zeg7RkX7PkpWqbakTJVC1bwpD8-KU05lVXLB-fNH-5PiPMZ7mkfFlWTqZXEiaFvnvTgtfn61e59gJMGPSPxArEsYSh_W4AjELYQECcmECTo_2jiRwQeSAkKa0KVZMdnkzca7Ptjsc9SU63GXYJrVBkKwGAgnF8amYN0l6XGwxqIzhyvSQcSeeEfSJlfyuzjPPY6vihcDjBHPH9az4vvtx283d-Xqy6fPN9er0tSMpbKRtYSWS2yh6qVp2hZabPoeKtoJ1jZMDZ1SqgYmZJ2ZDgQMUnbAVMVY04iz4sPiu911E_Ym9xVg1NtgJwgH7cHqf2-c3ei13-tasly7ygaXi8HmiezueqXnM8oFVUKyPcvsxUOx4H_sMCY92WhwHMFhbl1zphilTdXyjL59gt77XXD5K2aKyloIJTLFF8oEH2PA4fgCRvUcFb1EReeo6N9R0YcsevO45aPkTzAyIBYg5iu3xvC39n9sfwEnbMw1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190463393</pqid></control><display><type>article</type><title>Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Saheki, Takeyori ; Moriyama, Mitsuaki ; Kuroda, Eishi ; Funahashi, Aki ; Yasuda, Izumi ; Setogawa, Yoshiko ; Gao, Qinghua ; Ushikai, Miharu ; Furuie, Sumie ; Yamamura, Ken-ichi ; Takano, Katsura ; Nakamura, Yoichi ; Eto, Kazuhiro ; Kadowaki, Takashi ; Sinasac, David S. ; Furukawa, Tatsuhiko ; Horiuchi, Masahisa ; Tai, Yen How</creator><creatorcontrib>Saheki, Takeyori ; Moriyama, Mitsuaki ; Kuroda, Eishi ; Funahashi, Aki ; Yasuda, Izumi ; Setogawa, Yoshiko ; Gao, Qinghua ; Ushikai, Miharu ; Furuie, Sumie ; Yamamura, Ken-ichi ; Takano, Katsura ; Nakamura, Yoichi ; Eto, Kazuhiro ; Kadowaki, Takashi ; Sinasac, David S. ; Furukawa, Tatsuhiko ; Horiuchi, Masahisa ; Tai, Yen How</creatorcontrib><description>Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD
+
ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-39627-y</identifier><identifier>PMID: 30862943</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45 ; 64 ; 64/110 ; 64/60 ; 692/699/317 ; Alanine ; Amino acids ; Amino Acids - blood ; Amino Acids - pharmacology ; Ammonia ; Ammonia - blood ; Ammonium Chloride - metabolism ; Animals ; Arginine ; Aspartic Acid - metabolism ; Citrulline ; Citrulline - pharmacology ; Citrullinemia - metabolism ; Disease Models, Animal ; Ethanol ; Glycerol ; Glycerol-3-phosphate ; Glycerolphosphate Dehydrogenase - metabolism ; Glycine ; Humanities and Social Sciences ; Hyperammonemia ; Hyperammonemia - blood ; Intestine, Small - metabolism ; Lactates - metabolism ; Liver ; Liver - metabolism ; Metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Mitochondrial Membrane Transport Proteins - deficiency ; multidisciplinary ; NAD ; NADH ; Optics ; Oral administration ; Organ Specificity ; Ornithine ; Ornithine - pharmacology ; Perfusion ; Physics ; Portal vein ; Portal Vein - metabolism ; Pyruvic Acid - metabolism ; Rodents ; Science ; Science (multidisciplinary) ; Small intestine ; Sucrose ; Triglycerides ; Urea - metabolism</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.4179-4179, Article 4179</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-7464a824e8a5d4c788a8e7dda50b318719fb9996a13468a5ba3af44ba19511773</citedby><cites>FETCH-LOGICAL-c611t-7464a824e8a5d4c788a8e7dda50b318719fb9996a13468a5ba3af44ba19511773</cites><orcidid>0000-0002-5428-3582 ; 0000-0001-6730-8921 ; 0000-0002-3749-5989 ; 0000-0001-8123-8835 ; 0000-0003-1655-4123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30862943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02309341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saheki, Takeyori</creatorcontrib><creatorcontrib>Moriyama, Mitsuaki</creatorcontrib><creatorcontrib>Kuroda, Eishi</creatorcontrib><creatorcontrib>Funahashi, Aki</creatorcontrib><creatorcontrib>Yasuda, Izumi</creatorcontrib><creatorcontrib>Setogawa, Yoshiko</creatorcontrib><creatorcontrib>Gao, Qinghua</creatorcontrib><creatorcontrib>Ushikai, Miharu</creatorcontrib><creatorcontrib>Furuie, Sumie</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takano, Katsura</creatorcontrib><creatorcontrib>Nakamura, Yoichi</creatorcontrib><creatorcontrib>Eto, Kazuhiro</creatorcontrib><creatorcontrib>Kadowaki, Takashi</creatorcontrib><creatorcontrib>Sinasac, David S.</creatorcontrib><creatorcontrib>Furukawa, Tatsuhiko</creatorcontrib><creatorcontrib>Horiuchi, Masahisa</creatorcontrib><creatorcontrib>Tai, Yen How</creatorcontrib><title>Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD
+
ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency.</description><subject>631/45</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>692/699/317</subject><subject>Alanine</subject><subject>Amino acids</subject><subject>Amino Acids - blood</subject><subject>Amino Acids - pharmacology</subject><subject>Ammonia</subject><subject>Ammonia - blood</subject><subject>Ammonium Chloride - metabolism</subject><subject>Animals</subject><subject>Arginine</subject><subject>Aspartic Acid - metabolism</subject><subject>Citrulline</subject><subject>Citrulline - pharmacology</subject><subject>Citrullinemia - metabolism</subject><subject>Disease Models, Animal</subject><subject>Ethanol</subject><subject>Glycerol</subject><subject>Glycerol-3-phosphate</subject><subject>Glycerolphosphate Dehydrogenase - metabolism</subject><subject>Glycine</subject><subject>Humanities and Social Sciences</subject><subject>Hyperammonemia</subject><subject>Hyperammonemia - blood</subject><subject>Intestine, Small - metabolism</subject><subject>Lactates - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - deficiency</subject><subject>multidisciplinary</subject><subject>NAD</subject><subject>NADH</subject><subject>Optics</subject><subject>Oral administration</subject><subject>Organ Specificity</subject><subject>Ornithine</subject><subject>Ornithine - pharmacology</subject><subject>Perfusion</subject><subject>Physics</subject><subject>Portal vein</subject><subject>Portal Vein - metabolism</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Small intestine</subject><subject>Sucrose</subject><subject>Triglycerides</subject><subject>Urea - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAlti0UgP-y483SFVFKdJIsIC1dePczLhK7MH2jDTPwsvikDKULvDCtuzvnOtrnaJ4zeg7RkX7PkpWqbakTJVC1bwpD8-KU05lVXLB-fNH-5PiPMZ7mkfFlWTqZXEiaFvnvTgtfn61e59gJMGPSPxArEsYSh_W4AjELYQECcmECTo_2jiRwQeSAkKa0KVZMdnkzca7Ptjsc9SU63GXYJrVBkKwGAgnF8amYN0l6XGwxqIzhyvSQcSeeEfSJlfyuzjPPY6vihcDjBHPH9az4vvtx283d-Xqy6fPN9er0tSMpbKRtYSWS2yh6qVp2hZabPoeKtoJ1jZMDZ1SqgYmZJ2ZDgQMUnbAVMVY04iz4sPiu911E_Ym9xVg1NtgJwgH7cHqf2-c3ei13-tasly7ygaXi8HmiezueqXnM8oFVUKyPcvsxUOx4H_sMCY92WhwHMFhbl1zphilTdXyjL59gt77XXD5K2aKyloIJTLFF8oEH2PA4fgCRvUcFb1EReeo6N9R0YcsevO45aPkTzAyIBYg5iu3xvC39n9sfwEnbMw1</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Saheki, Takeyori</creator><creator>Moriyama, Mitsuaki</creator><creator>Kuroda, Eishi</creator><creator>Funahashi, Aki</creator><creator>Yasuda, Izumi</creator><creator>Setogawa, Yoshiko</creator><creator>Gao, Qinghua</creator><creator>Ushikai, Miharu</creator><creator>Furuie, Sumie</creator><creator>Yamamura, Ken-ichi</creator><creator>Takano, Katsura</creator><creator>Nakamura, Yoichi</creator><creator>Eto, Kazuhiro</creator><creator>Kadowaki, Takashi</creator><creator>Sinasac, David S.</creator><creator>Furukawa, Tatsuhiko</creator><creator>Horiuchi, Masahisa</creator><creator>Tai, Yen How</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5428-3582</orcidid><orcidid>https://orcid.org/0000-0001-6730-8921</orcidid><orcidid>https://orcid.org/0000-0002-3749-5989</orcidid><orcidid>https://orcid.org/0000-0001-8123-8835</orcidid><orcidid>https://orcid.org/0000-0003-1655-4123</orcidid></search><sort><creationdate>20190312</creationdate><title>Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model</title><author>Saheki, Takeyori ; Moriyama, Mitsuaki ; Kuroda, Eishi ; Funahashi, Aki ; Yasuda, Izumi ; Setogawa, Yoshiko ; Gao, Qinghua ; Ushikai, Miharu ; Furuie, Sumie ; Yamamura, Ken-ichi ; Takano, Katsura ; Nakamura, Yoichi ; Eto, Kazuhiro ; Kadowaki, Takashi ; Sinasac, David S. ; Furukawa, Tatsuhiko ; Horiuchi, Masahisa ; Tai, Yen How</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-7464a824e8a5d4c788a8e7dda50b318719fb9996a13468a5ba3af44ba19511773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>692/699/317</topic><topic>Alanine</topic><topic>Amino acids</topic><topic>Amino Acids - blood</topic><topic>Amino Acids - pharmacology</topic><topic>Ammonia</topic><topic>Ammonia - blood</topic><topic>Ammonium Chloride - metabolism</topic><topic>Animals</topic><topic>Arginine</topic><topic>Aspartic Acid - metabolism</topic><topic>Citrulline</topic><topic>Citrulline - pharmacology</topic><topic>Citrullinemia - metabolism</topic><topic>Disease Models, Animal</topic><topic>Ethanol</topic><topic>Glycerol</topic><topic>Glycerol-3-phosphate</topic><topic>Glycerolphosphate Dehydrogenase - metabolism</topic><topic>Glycine</topic><topic>Humanities and Social Sciences</topic><topic>Hyperammonemia</topic><topic>Hyperammonemia - blood</topic><topic>Intestine, Small - metabolism</topic><topic>Lactates - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - deficiency</topic><topic>multidisciplinary</topic><topic>NAD</topic><topic>NADH</topic><topic>Optics</topic><topic>Oral administration</topic><topic>Organ Specificity</topic><topic>Ornithine</topic><topic>Ornithine - pharmacology</topic><topic>Perfusion</topic><topic>Physics</topic><topic>Portal vein</topic><topic>Portal Vein - metabolism</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Small intestine</topic><topic>Sucrose</topic><topic>Triglycerides</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saheki, Takeyori</creatorcontrib><creatorcontrib>Moriyama, Mitsuaki</creatorcontrib><creatorcontrib>Kuroda, Eishi</creatorcontrib><creatorcontrib>Funahashi, Aki</creatorcontrib><creatorcontrib>Yasuda, Izumi</creatorcontrib><creatorcontrib>Setogawa, Yoshiko</creatorcontrib><creatorcontrib>Gao, Qinghua</creatorcontrib><creatorcontrib>Ushikai, Miharu</creatorcontrib><creatorcontrib>Furuie, Sumie</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takano, Katsura</creatorcontrib><creatorcontrib>Nakamura, Yoichi</creatorcontrib><creatorcontrib>Eto, Kazuhiro</creatorcontrib><creatorcontrib>Kadowaki, Takashi</creatorcontrib><creatorcontrib>Sinasac, David S.</creatorcontrib><creatorcontrib>Furukawa, Tatsuhiko</creatorcontrib><creatorcontrib>Horiuchi, Masahisa</creatorcontrib><creatorcontrib>Tai, Yen How</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saheki, Takeyori</au><au>Moriyama, Mitsuaki</au><au>Kuroda, Eishi</au><au>Funahashi, Aki</au><au>Yasuda, Izumi</au><au>Setogawa, Yoshiko</au><au>Gao, Qinghua</au><au>Ushikai, Miharu</au><au>Furuie, Sumie</au><au>Yamamura, Ken-ichi</au><au>Takano, Katsura</au><au>Nakamura, Yoichi</au><au>Eto, Kazuhiro</au><au>Kadowaki, Takashi</au><au>Sinasac, David S.</au><au>Furukawa, Tatsuhiko</au><au>Horiuchi, Masahisa</au><au>Tai, Yen How</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>4179</spage><epage>4179</epage><pages>4179-4179</pages><artnum>4179</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD
+
ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30862943</pmid><doi>10.1038/s41598-019-39627-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5428-3582</orcidid><orcidid>https://orcid.org/0000-0001-6730-8921</orcidid><orcidid>https://orcid.org/0000-0002-3749-5989</orcidid><orcidid>https://orcid.org/0000-0001-8123-8835</orcidid><orcidid>https://orcid.org/0000-0003-1655-4123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.4179-4179, Article 4179 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6414645 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/45 64 64/110 64/60 692/699/317 Alanine Amino acids Amino Acids - blood Amino Acids - pharmacology Ammonia Ammonia - blood Ammonium Chloride - metabolism Animals Arginine Aspartic Acid - metabolism Citrulline Citrulline - pharmacology Citrullinemia - metabolism Disease Models, Animal Ethanol Glycerol Glycerol-3-phosphate Glycerolphosphate Dehydrogenase - metabolism Glycine Humanities and Social Sciences Hyperammonemia Hyperammonemia - blood Intestine, Small - metabolism Lactates - metabolism Liver Liver - metabolism Metabolism Mice, Inbred C57BL Mice, Knockout Mitochondria Mitochondrial Membrane Transport Proteins - deficiency multidisciplinary NAD NADH Optics Oral administration Organ Specificity Ornithine Ornithine - pharmacology Perfusion Physics Portal vein Portal Vein - metabolism Pyruvic Acid - metabolism Rodents Science Science (multidisciplinary) Small intestine Sucrose Triglycerides Urea - metabolism |
title | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pivotal%20role%20of%20inter-organ%20aspartate%20metabolism%20for%20treatment%20of%20mitochondrial%20aspartate-glutamate%20carrier%202%20(citrin)%20deficiency,%20based%20on%20the%20mouse%20model&rft.jtitle=Scientific%20reports&rft.au=Saheki,%20Takeyori&rft.date=2019-03-12&rft.volume=9&rft.issue=1&rft.spage=4179&rft.epage=4179&rft.pages=4179-4179&rft.artnum=4179&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-39627-y&rft_dat=%3Cproquest_pubme%3E2190463393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190463393&rft_id=info:pmid/30862943&rfr_iscdi=true |