Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity

Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysacchar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2019-02, Vol.11 (2), p.368
Hauptverfasser: Hirata, Narumi, Ichimaru, Ryota, Tominari, Tsukasa, Matsumoto, Chiho, Watanabe, Kenta, Taniguchi, Keita, Hirata, Michiko, Ma, Sihui, Suzuki, Katsuhiko, Grundler, Florian M W, Miyaura, Chisato, Inada, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 368
container_title Nutrients
container_volume 11
creator Hirata, Narumi
Ichimaru, Ryota
Tominari, Tsukasa
Matsumoto, Chiho
Watanabe, Kenta
Taniguchi, Keita
Hirata, Michiko
Ma, Sihui
Suzuki, Katsuhiko
Grundler, Florian M W
Miyaura, Chisato
Inada, Masaki
description Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.
doi_str_mv 10.3390/nu11020368
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315631534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEolXpDQ-ALHGDkAI-xXFukLoLhRUrKnG4thx7Qlxl7dR2Vuzb9Dn6EDwTWXqgcMXII9vjT7891l8UTwl-xViDX_uJEEwxE_JBcUhxTUshOHt4b31QHKd0jvdR41qwx8UBwzXnROLD4nIBWZfLuBtz-KF97p1HK9-71uWE1m4MYxh2SRvT6-gslCtvJwMWnaUMwQw6ZfTWdR1E8Nnp7IJH2lu0CB7QZ0ghjr9rW6dR7gF9mcYxQkr7Wuhubwpxv_l0Wv68WqCPzusE6MRkt3V596R41OkhwfHNfFR8O333dfmhXJ-9Xy1P1qVhFZdlJTvRgbENb4SWDRCMoWkZoZbJ2tAWc9JUmtiKAAamWwrSWEOFaZip2rpmR8Wba91xajdgzdxP1IMao9vouFNBO_X3iXe9-h62SnBCOROzwIsbgRguJkhZbVwyMAzaQ5iSolSKBs-j-g8Uk5pgIsmMPv8HPQ9T9PNPKMpIJeZkfKZeXlMmhpQidHfvJljtbaL-2GSGn93v9A69NQX7Ba7Qu1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315631534</pqid></control><display><type>article</type><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</creator><creatorcontrib>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</creatorcontrib><description>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11020368</identifier><identifier>PMID: 30744180</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>adenosine triphosphate ; animal models ; Animals ; antioxidant activity ; beta-cryptoxanthin ; Beta-Cryptoxanthin - pharmacology ; binding sites ; Biomedical materials ; Bone growth ; Bone resorption ; Bone Resorption - metabolism ; Carotenoids ; carrots ; Cathepsin K ; Cbfa-1 protein ; Cell differentiation ; Cell Differentiation - drug effects ; computer simulation ; Cyclooxygenase-2 ; Differentiation ; enzyme activity ; Enzyme inhibitors ; Fibroblasts ; fruits ; Gene expression ; Gram-negative bacteria ; Growth factors ; Gum disease ; IKappaB kinase ; in vitro studies ; Inflammation ; Inflammatory response ; Kinases ; Ligands ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Male ; mandarins ; messenger RNA ; Mice ; Mineralization ; NF-κB protein ; Osteoblastogenesis ; Osteoblasts ; Osteoclastogenesis ; osteoclasts ; Osteoclasts - cytology ; Osteoclasts - drug effects ; Osteogenesis ; paprika ; periodontitis ; persimmons ; Prostaglandin E2 ; prostaglandin synthase ; Prostaglandin-E synthase ; prostaglandins ; Proteins ; RANK Ligand - antagonists &amp; inhibitors ; RANK Ligand - metabolism ; RAW 264.7 Cells ; Science ; Stem cells ; TLR4 protein ; Toll-like receptors ; TRANCE protein ; transcription factor NF-kappa B ; transcriptional activation</subject><ispartof>Nutrients, 2019-02, Vol.11 (2), p.368</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</citedby><cites>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</cites><orcidid>0000-0001-8101-0558 ; 0000-0002-0606-5759 ; 0000-0002-6572-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30744180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirata, Narumi</creatorcontrib><creatorcontrib>Ichimaru, Ryota</creatorcontrib><creatorcontrib>Tominari, Tsukasa</creatorcontrib><creatorcontrib>Matsumoto, Chiho</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Taniguchi, Keita</creatorcontrib><creatorcontrib>Hirata, Michiko</creatorcontrib><creatorcontrib>Ma, Sihui</creatorcontrib><creatorcontrib>Suzuki, Katsuhiko</creatorcontrib><creatorcontrib>Grundler, Florian M W</creatorcontrib><creatorcontrib>Miyaura, Chisato</creatorcontrib><creatorcontrib>Inada, Masaki</creatorcontrib><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</description><subject>adenosine triphosphate</subject><subject>animal models</subject><subject>Animals</subject><subject>antioxidant activity</subject><subject>beta-cryptoxanthin</subject><subject>Beta-Cryptoxanthin - pharmacology</subject><subject>binding sites</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Bone Resorption - metabolism</subject><subject>Carotenoids</subject><subject>carrots</subject><subject>Cathepsin K</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>computer simulation</subject><subject>Cyclooxygenase-2</subject><subject>Differentiation</subject><subject>enzyme activity</subject><subject>Enzyme inhibitors</subject><subject>Fibroblasts</subject><subject>fruits</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Growth factors</subject><subject>Gum disease</subject><subject>IKappaB kinase</subject><subject>in vitro studies</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Male</subject><subject>mandarins</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mineralization</subject><subject>NF-κB protein</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclastogenesis</subject><subject>osteoclasts</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - drug effects</subject><subject>Osteogenesis</subject><subject>paprika</subject><subject>periodontitis</subject><subject>persimmons</subject><subject>Prostaglandin E2</subject><subject>prostaglandin synthase</subject><subject>Prostaglandin-E synthase</subject><subject>prostaglandins</subject><subject>Proteins</subject><subject>RANK Ligand - antagonists &amp; inhibitors</subject><subject>RANK Ligand - metabolism</subject><subject>RAW 264.7 Cells</subject><subject>Science</subject><subject>Stem cells</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>TRANCE protein</subject><subject>transcription factor NF-kappa B</subject><subject>transcriptional activation</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkttu1DAQhiMEolXpDQ-ALHGDkAI-xXFukLoLhRUrKnG4thx7Qlxl7dR2Vuzb9Dn6EDwTWXqgcMXII9vjT7891l8UTwl-xViDX_uJEEwxE_JBcUhxTUshOHt4b31QHKd0jvdR41qwx8UBwzXnROLD4nIBWZfLuBtz-KF97p1HK9-71uWE1m4MYxh2SRvT6-gslCtvJwMWnaUMwQw6ZfTWdR1E8Nnp7IJH2lu0CB7QZ0ghjr9rW6dR7gF9mcYxQkr7Wuhubwpxv_l0Wv68WqCPzusE6MRkt3V596R41OkhwfHNfFR8O333dfmhXJ-9Xy1P1qVhFZdlJTvRgbENb4SWDRCMoWkZoZbJ2tAWc9JUmtiKAAamWwrSWEOFaZip2rpmR8Wba91xajdgzdxP1IMao9vouFNBO_X3iXe9-h62SnBCOROzwIsbgRguJkhZbVwyMAzaQ5iSolSKBs-j-g8Uk5pgIsmMPv8HPQ9T9PNPKMpIJeZkfKZeXlMmhpQidHfvJljtbaL-2GSGn93v9A69NQX7Ba7Qu1Q</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>Hirata, Narumi</creator><creator>Ichimaru, Ryota</creator><creator>Tominari, Tsukasa</creator><creator>Matsumoto, Chiho</creator><creator>Watanabe, Kenta</creator><creator>Taniguchi, Keita</creator><creator>Hirata, Michiko</creator><creator>Ma, Sihui</creator><creator>Suzuki, Katsuhiko</creator><creator>Grundler, Florian M W</creator><creator>Miyaura, Chisato</creator><creator>Inada, Masaki</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8101-0558</orcidid><orcidid>https://orcid.org/0000-0002-0606-5759</orcidid><orcidid>https://orcid.org/0000-0002-6572-5809</orcidid></search><sort><creationdate>20190210</creationdate><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><author>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adenosine triphosphate</topic><topic>animal models</topic><topic>Animals</topic><topic>antioxidant activity</topic><topic>beta-cryptoxanthin</topic><topic>Beta-Cryptoxanthin - pharmacology</topic><topic>binding sites</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Bone Resorption - metabolism</topic><topic>Carotenoids</topic><topic>carrots</topic><topic>Cathepsin K</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>computer simulation</topic><topic>Cyclooxygenase-2</topic><topic>Differentiation</topic><topic>enzyme activity</topic><topic>Enzyme inhibitors</topic><topic>Fibroblasts</topic><topic>fruits</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Growth factors</topic><topic>Gum disease</topic><topic>IKappaB kinase</topic><topic>in vitro studies</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Male</topic><topic>mandarins</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mineralization</topic><topic>NF-κB protein</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclastogenesis</topic><topic>osteoclasts</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - drug effects</topic><topic>Osteogenesis</topic><topic>paprika</topic><topic>periodontitis</topic><topic>persimmons</topic><topic>Prostaglandin E2</topic><topic>prostaglandin synthase</topic><topic>Prostaglandin-E synthase</topic><topic>prostaglandins</topic><topic>Proteins</topic><topic>RANK Ligand - antagonists &amp; inhibitors</topic><topic>RANK Ligand - metabolism</topic><topic>RAW 264.7 Cells</topic><topic>Science</topic><topic>Stem cells</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>TRANCE protein</topic><topic>transcription factor NF-kappa B</topic><topic>transcriptional activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirata, Narumi</creatorcontrib><creatorcontrib>Ichimaru, Ryota</creatorcontrib><creatorcontrib>Tominari, Tsukasa</creatorcontrib><creatorcontrib>Matsumoto, Chiho</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Taniguchi, Keita</creatorcontrib><creatorcontrib>Hirata, Michiko</creatorcontrib><creatorcontrib>Ma, Sihui</creatorcontrib><creatorcontrib>Suzuki, Katsuhiko</creatorcontrib><creatorcontrib>Grundler, Florian M W</creatorcontrib><creatorcontrib>Miyaura, Chisato</creatorcontrib><creatorcontrib>Inada, Masaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirata, Narumi</au><au>Ichimaru, Ryota</au><au>Tominari, Tsukasa</au><au>Matsumoto, Chiho</au><au>Watanabe, Kenta</au><au>Taniguchi, Keita</au><au>Hirata, Michiko</au><au>Ma, Sihui</au><au>Suzuki, Katsuhiko</au><au>Grundler, Florian M W</au><au>Miyaura, Chisato</au><au>Inada, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>368</spage><pages>368-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30744180</pmid><doi>10.3390/nu11020368</doi><orcidid>https://orcid.org/0000-0001-8101-0558</orcidid><orcidid>https://orcid.org/0000-0002-0606-5759</orcidid><orcidid>https://orcid.org/0000-0002-6572-5809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2019-02, Vol.11 (2), p.368
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412436
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects adenosine triphosphate
animal models
Animals
antioxidant activity
beta-cryptoxanthin
Beta-Cryptoxanthin - pharmacology
binding sites
Biomedical materials
Bone growth
Bone resorption
Bone Resorption - metabolism
Carotenoids
carrots
Cathepsin K
Cbfa-1 protein
Cell differentiation
Cell Differentiation - drug effects
computer simulation
Cyclooxygenase-2
Differentiation
enzyme activity
Enzyme inhibitors
Fibroblasts
fruits
Gene expression
Gram-negative bacteria
Growth factors
Gum disease
IKappaB kinase
in vitro studies
Inflammation
Inflammatory response
Kinases
Ligands
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Male
mandarins
messenger RNA
Mice
Mineralization
NF-κB protein
Osteoblastogenesis
Osteoblasts
Osteoclastogenesis
osteoclasts
Osteoclasts - cytology
Osteoclasts - drug effects
Osteogenesis
paprika
periodontitis
persimmons
Prostaglandin E2
prostaglandin synthase
Prostaglandin-E synthase
prostaglandins
Proteins
RANK Ligand - antagonists & inhibitors
RANK Ligand - metabolism
RAW 264.7 Cells
Science
Stem cells
TLR4 protein
Toll-like receptors
TRANCE protein
transcription factor NF-kappa B
transcriptional activation
title Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta-Cryptoxanthin%20Inhibits%20Lipopolysaccharide-Induced%20Osteoclast%20Differentiation%20and%20Bone%20Resorption%20via%20the%20Suppression%20of%20Inhibitor%20of%20NF-%CE%BAB%20Kinase%20Activity&rft.jtitle=Nutrients&rft.au=Hirata,%20Narumi&rft.date=2019-02-10&rft.volume=11&rft.issue=2&rft.spage=368&rft.pages=368-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11020368&rft_dat=%3Cproquest_pubme%3E2315631534%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315631534&rft_id=info:pmid/30744180&rfr_iscdi=true