Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity
Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysacchar...
Gespeichert in:
Veröffentlicht in: | Nutrients 2019-02, Vol.11 (2), p.368 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 368 |
container_title | Nutrients |
container_volume | 11 |
creator | Hirata, Narumi Ichimaru, Ryota Tominari, Tsukasa Matsumoto, Chiho Watanabe, Kenta Taniguchi, Keita Hirata, Michiko Ma, Sihui Suzuki, Katsuhiko Grundler, Florian M W Miyaura, Chisato Inada, Masaki |
description | Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling. |
doi_str_mv | 10.3390/nu11020368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315631534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEolXpDQ-ALHGDkAI-xXFukLoLhRUrKnG4thx7Qlxl7dR2Vuzb9Dn6EDwTWXqgcMXII9vjT7891l8UTwl-xViDX_uJEEwxE_JBcUhxTUshOHt4b31QHKd0jvdR41qwx8UBwzXnROLD4nIBWZfLuBtz-KF97p1HK9-71uWE1m4MYxh2SRvT6-gslCtvJwMWnaUMwQw6ZfTWdR1E8Nnp7IJH2lu0CB7QZ0ghjr9rW6dR7gF9mcYxQkr7Wuhubwpxv_l0Wv68WqCPzusE6MRkt3V596R41OkhwfHNfFR8O333dfmhXJ-9Xy1P1qVhFZdlJTvRgbENb4SWDRCMoWkZoZbJ2tAWc9JUmtiKAAamWwrSWEOFaZip2rpmR8Wba91xajdgzdxP1IMao9vouFNBO_X3iXe9-h62SnBCOROzwIsbgRguJkhZbVwyMAzaQ5iSolSKBs-j-g8Uk5pgIsmMPv8HPQ9T9PNPKMpIJeZkfKZeXlMmhpQidHfvJljtbaL-2GSGn93v9A69NQX7Ba7Qu1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315631534</pqid></control><display><type>article</type><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</creator><creatorcontrib>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</creatorcontrib><description>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11020368</identifier><identifier>PMID: 30744180</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>adenosine triphosphate ; animal models ; Animals ; antioxidant activity ; beta-cryptoxanthin ; Beta-Cryptoxanthin - pharmacology ; binding sites ; Biomedical materials ; Bone growth ; Bone resorption ; Bone Resorption - metabolism ; Carotenoids ; carrots ; Cathepsin K ; Cbfa-1 protein ; Cell differentiation ; Cell Differentiation - drug effects ; computer simulation ; Cyclooxygenase-2 ; Differentiation ; enzyme activity ; Enzyme inhibitors ; Fibroblasts ; fruits ; Gene expression ; Gram-negative bacteria ; Growth factors ; Gum disease ; IKappaB kinase ; in vitro studies ; Inflammation ; Inflammatory response ; Kinases ; Ligands ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Male ; mandarins ; messenger RNA ; Mice ; Mineralization ; NF-κB protein ; Osteoblastogenesis ; Osteoblasts ; Osteoclastogenesis ; osteoclasts ; Osteoclasts - cytology ; Osteoclasts - drug effects ; Osteogenesis ; paprika ; periodontitis ; persimmons ; Prostaglandin E2 ; prostaglandin synthase ; Prostaglandin-E synthase ; prostaglandins ; Proteins ; RANK Ligand - antagonists & inhibitors ; RANK Ligand - metabolism ; RAW 264.7 Cells ; Science ; Stem cells ; TLR4 protein ; Toll-like receptors ; TRANCE protein ; transcription factor NF-kappa B ; transcriptional activation</subject><ispartof>Nutrients, 2019-02, Vol.11 (2), p.368</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</citedby><cites>FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</cites><orcidid>0000-0001-8101-0558 ; 0000-0002-0606-5759 ; 0000-0002-6572-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30744180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirata, Narumi</creatorcontrib><creatorcontrib>Ichimaru, Ryota</creatorcontrib><creatorcontrib>Tominari, Tsukasa</creatorcontrib><creatorcontrib>Matsumoto, Chiho</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Taniguchi, Keita</creatorcontrib><creatorcontrib>Hirata, Michiko</creatorcontrib><creatorcontrib>Ma, Sihui</creatorcontrib><creatorcontrib>Suzuki, Katsuhiko</creatorcontrib><creatorcontrib>Grundler, Florian M W</creatorcontrib><creatorcontrib>Miyaura, Chisato</creatorcontrib><creatorcontrib>Inada, Masaki</creatorcontrib><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</description><subject>adenosine triphosphate</subject><subject>animal models</subject><subject>Animals</subject><subject>antioxidant activity</subject><subject>beta-cryptoxanthin</subject><subject>Beta-Cryptoxanthin - pharmacology</subject><subject>binding sites</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Bone Resorption - metabolism</subject><subject>Carotenoids</subject><subject>carrots</subject><subject>Cathepsin K</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>computer simulation</subject><subject>Cyclooxygenase-2</subject><subject>Differentiation</subject><subject>enzyme activity</subject><subject>Enzyme inhibitors</subject><subject>Fibroblasts</subject><subject>fruits</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Growth factors</subject><subject>Gum disease</subject><subject>IKappaB kinase</subject><subject>in vitro studies</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Male</subject><subject>mandarins</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mineralization</subject><subject>NF-κB protein</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclastogenesis</subject><subject>osteoclasts</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - drug effects</subject><subject>Osteogenesis</subject><subject>paprika</subject><subject>periodontitis</subject><subject>persimmons</subject><subject>Prostaglandin E2</subject><subject>prostaglandin synthase</subject><subject>Prostaglandin-E synthase</subject><subject>prostaglandins</subject><subject>Proteins</subject><subject>RANK Ligand - antagonists & inhibitors</subject><subject>RANK Ligand - metabolism</subject><subject>RAW 264.7 Cells</subject><subject>Science</subject><subject>Stem cells</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>TRANCE protein</subject><subject>transcription factor NF-kappa B</subject><subject>transcriptional activation</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkttu1DAQhiMEolXpDQ-ALHGDkAI-xXFukLoLhRUrKnG4thx7Qlxl7dR2Vuzb9Dn6EDwTWXqgcMXII9vjT7891l8UTwl-xViDX_uJEEwxE_JBcUhxTUshOHt4b31QHKd0jvdR41qwx8UBwzXnROLD4nIBWZfLuBtz-KF97p1HK9-71uWE1m4MYxh2SRvT6-gslCtvJwMWnaUMwQw6ZfTWdR1E8Nnp7IJH2lu0CB7QZ0ghjr9rW6dR7gF9mcYxQkr7Wuhubwpxv_l0Wv68WqCPzusE6MRkt3V596R41OkhwfHNfFR8O333dfmhXJ-9Xy1P1qVhFZdlJTvRgbENb4SWDRCMoWkZoZbJ2tAWc9JUmtiKAAamWwrSWEOFaZip2rpmR8Wba91xajdgzdxP1IMao9vouFNBO_X3iXe9-h62SnBCOROzwIsbgRguJkhZbVwyMAzaQ5iSolSKBs-j-g8Uk5pgIsmMPv8HPQ9T9PNPKMpIJeZkfKZeXlMmhpQidHfvJljtbaL-2GSGn93v9A69NQX7Ba7Qu1Q</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>Hirata, Narumi</creator><creator>Ichimaru, Ryota</creator><creator>Tominari, Tsukasa</creator><creator>Matsumoto, Chiho</creator><creator>Watanabe, Kenta</creator><creator>Taniguchi, Keita</creator><creator>Hirata, Michiko</creator><creator>Ma, Sihui</creator><creator>Suzuki, Katsuhiko</creator><creator>Grundler, Florian M W</creator><creator>Miyaura, Chisato</creator><creator>Inada, Masaki</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8101-0558</orcidid><orcidid>https://orcid.org/0000-0002-0606-5759</orcidid><orcidid>https://orcid.org/0000-0002-6572-5809</orcidid></search><sort><creationdate>20190210</creationdate><title>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</title><author>Hirata, Narumi ; Ichimaru, Ryota ; Tominari, Tsukasa ; Matsumoto, Chiho ; Watanabe, Kenta ; Taniguchi, Keita ; Hirata, Michiko ; Ma, Sihui ; Suzuki, Katsuhiko ; Grundler, Florian M W ; Miyaura, Chisato ; Inada, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-58f6fecd9496a89e100e9b312d387c2b04195a1d51e0e3ab2e8cdc26c93c5b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adenosine triphosphate</topic><topic>animal models</topic><topic>Animals</topic><topic>antioxidant activity</topic><topic>beta-cryptoxanthin</topic><topic>Beta-Cryptoxanthin - pharmacology</topic><topic>binding sites</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Bone Resorption - metabolism</topic><topic>Carotenoids</topic><topic>carrots</topic><topic>Cathepsin K</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>computer simulation</topic><topic>Cyclooxygenase-2</topic><topic>Differentiation</topic><topic>enzyme activity</topic><topic>Enzyme inhibitors</topic><topic>Fibroblasts</topic><topic>fruits</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Growth factors</topic><topic>Gum disease</topic><topic>IKappaB kinase</topic><topic>in vitro studies</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Male</topic><topic>mandarins</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mineralization</topic><topic>NF-κB protein</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclastogenesis</topic><topic>osteoclasts</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - drug effects</topic><topic>Osteogenesis</topic><topic>paprika</topic><topic>periodontitis</topic><topic>persimmons</topic><topic>Prostaglandin E2</topic><topic>prostaglandin synthase</topic><topic>Prostaglandin-E synthase</topic><topic>prostaglandins</topic><topic>Proteins</topic><topic>RANK Ligand - antagonists & inhibitors</topic><topic>RANK Ligand - metabolism</topic><topic>RAW 264.7 Cells</topic><topic>Science</topic><topic>Stem cells</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>TRANCE protein</topic><topic>transcription factor NF-kappa B</topic><topic>transcriptional activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirata, Narumi</creatorcontrib><creatorcontrib>Ichimaru, Ryota</creatorcontrib><creatorcontrib>Tominari, Tsukasa</creatorcontrib><creatorcontrib>Matsumoto, Chiho</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Taniguchi, Keita</creatorcontrib><creatorcontrib>Hirata, Michiko</creatorcontrib><creatorcontrib>Ma, Sihui</creatorcontrib><creatorcontrib>Suzuki, Katsuhiko</creatorcontrib><creatorcontrib>Grundler, Florian M W</creatorcontrib><creatorcontrib>Miyaura, Chisato</creatorcontrib><creatorcontrib>Inada, Masaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirata, Narumi</au><au>Ichimaru, Ryota</au><au>Tominari, Tsukasa</au><au>Matsumoto, Chiho</au><au>Watanabe, Kenta</au><au>Taniguchi, Keita</au><au>Hirata, Michiko</au><au>Ma, Sihui</au><au>Suzuki, Katsuhiko</au><au>Grundler, Florian M W</au><au>Miyaura, Chisato</au><au>Inada, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>368</spage><pages>368-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30744180</pmid><doi>10.3390/nu11020368</doi><orcidid>https://orcid.org/0000-0001-8101-0558</orcidid><orcidid>https://orcid.org/0000-0002-0606-5759</orcidid><orcidid>https://orcid.org/0000-0002-6572-5809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2019-02, Vol.11 (2), p.368 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412436 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | adenosine triphosphate animal models Animals antioxidant activity beta-cryptoxanthin Beta-Cryptoxanthin - pharmacology binding sites Biomedical materials Bone growth Bone resorption Bone Resorption - metabolism Carotenoids carrots Cathepsin K Cbfa-1 protein Cell differentiation Cell Differentiation - drug effects computer simulation Cyclooxygenase-2 Differentiation enzyme activity Enzyme inhibitors Fibroblasts fruits Gene expression Gram-negative bacteria Growth factors Gum disease IKappaB kinase in vitro studies Inflammation Inflammatory response Kinases Ligands Lipopolysaccharides Lipopolysaccharides - pharmacology Male mandarins messenger RNA Mice Mineralization NF-κB protein Osteoblastogenesis Osteoblasts Osteoclastogenesis osteoclasts Osteoclasts - cytology Osteoclasts - drug effects Osteogenesis paprika periodontitis persimmons Prostaglandin E2 prostaglandin synthase Prostaglandin-E synthase prostaglandins Proteins RANK Ligand - antagonists & inhibitors RANK Ligand - metabolism RAW 264.7 Cells Science Stem cells TLR4 protein Toll-like receptors TRANCE protein transcription factor NF-kappa B transcriptional activation |
title | Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta-Cryptoxanthin%20Inhibits%20Lipopolysaccharide-Induced%20Osteoclast%20Differentiation%20and%20Bone%20Resorption%20via%20the%20Suppression%20of%20Inhibitor%20of%20NF-%CE%BAB%20Kinase%20Activity&rft.jtitle=Nutrients&rft.au=Hirata,%20Narumi&rft.date=2019-02-10&rft.volume=11&rft.issue=2&rft.spage=368&rft.pages=368-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11020368&rft_dat=%3Cproquest_pubme%3E2315631534%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315631534&rft_id=info:pmid/30744180&rfr_iscdi=true |