A bacteria-based genetic assay detects prion formation

Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-03, Vol.116 (10), p.4605-4610
Hauptverfasser: Fleming, Eleanor, Yuan, Andy H., Heller, Danielle M., Hochschild, Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4610
container_issue 10
container_start_page 4605
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Fleming, Eleanor
Yuan, Andy H.
Heller, Danielle M.
Hochschild, Ann
description Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis. Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.
doi_str_mv 10.1073/pnas.1817711116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26683134</jstor_id><sourcerecordid>26683134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5c1186b5afc020ae5c630bdf5c073f14af0fbd9556de07f5e290b444852f6c1d3</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotj7OnpQFL162nWyeexFK8QUFL3oO2WyiW9pNTVKh_72Ran3kMoH5zcc38yF0hmGEQZDxqtdxhCUWAufH99AQQ41LTmvYR0OASpSSVnSAjmKcA0DNJByiAQEhKwlyiPikaLRJNnS6bHS0bfFie5s6U-gY9aZobbImxWIVOt8XzoelTvl3gg6cXkR7-lWP0fPtzdP0vpw93j1MJ7PSMKhTyQzGkjdMOwMVaMsMJ9C0jpls3mGqHbimrRnjrQXhmK1qaCilklWOG9ySY3S91V2tm6Vtje1T0AuV3Sx12CivO_W303ev6sW_K07zfQTJAldfAsG_rW1MatlFYxcL3Vu_jqrCkmIiuYCMXv5D534d-rxepmqKKQjOMjXeUib4GIN1OzMY1Gcm6jMT9ZNJnrj4vcOO_w4hA-dbYB6TD7t-xbkkmFDyAXfXkW8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194140765</pqid></control><display><type>article</type><title>A bacteria-based genetic assay detects prion formation</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Fleming, Eleanor ; Yuan, Andy H. ; Heller, Danielle M. ; Hochschild, Ann</creator><creatorcontrib>Fleming, Eleanor ; Yuan, Andy H. ; Heller, Danielle M. ; Hochschild, Ann</creatorcontrib><description>Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis. Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1817711116</identifier><identifier>PMID: 30782808</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assaying ; Bacteria ; Biological Sciences ; Campylobacter ; Campylobacter - genetics ; Campylobacter - metabolism ; ClpB protein ; Deoxyribonucleic acid ; DNA ; DNA-binding protein ; Domains ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes, Reporter ; Genetic Techniques ; Neurodegenerative diseases ; Neurological diseases ; Prion protein ; Prions ; Prions - genetics ; Prions - metabolism ; Proteins ; Self propagation ; Single-stranded DNA ; Single-stranded DNA-binding protein ; Transcription, Genetic ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (10), p.4605-4610</ispartof><rights>Copyright National Academy of Sciences Mar 5, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5c1186b5afc020ae5c630bdf5c073f14af0fbd9556de07f5e290b444852f6c1d3</citedby><cites>FETCH-LOGICAL-c509t-5c1186b5afc020ae5c630bdf5c073f14af0fbd9556de07f5e290b444852f6c1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26683134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26683134$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30782808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, Eleanor</creatorcontrib><creatorcontrib>Yuan, Andy H.</creatorcontrib><creatorcontrib>Heller, Danielle M.</creatorcontrib><creatorcontrib>Hochschild, Ann</creatorcontrib><title>A bacteria-based genetic assay detects prion formation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis. Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.</description><subject>Assaying</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Campylobacter</subject><subject>Campylobacter - genetics</subject><subject>Campylobacter - metabolism</subject><subject>ClpB protein</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-binding protein</subject><subject>Domains</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes, Reporter</subject><subject>Genetic Techniques</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Prions - genetics</subject><subject>Prions - metabolism</subject><subject>Proteins</subject><subject>Self propagation</subject><subject>Single-stranded DNA</subject><subject>Single-stranded DNA-binding protein</subject><subject>Transcription, Genetic</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMotj7OnpQFL162nWyeexFK8QUFL3oO2WyiW9pNTVKh_72Ran3kMoH5zcc38yF0hmGEQZDxqtdxhCUWAufH99AQQ41LTmvYR0OASpSSVnSAjmKcA0DNJByiAQEhKwlyiPikaLRJNnS6bHS0bfFie5s6U-gY9aZobbImxWIVOt8XzoelTvl3gg6cXkR7-lWP0fPtzdP0vpw93j1MJ7PSMKhTyQzGkjdMOwMVaMsMJ9C0jpls3mGqHbimrRnjrQXhmK1qaCilklWOG9ySY3S91V2tm6Vtje1T0AuV3Sx12CivO_W303ev6sW_K07zfQTJAldfAsG_rW1MatlFYxcL3Vu_jqrCkmIiuYCMXv5D534d-rxepmqKKQjOMjXeUib4GIN1OzMY1Gcm6jMT9ZNJnrj4vcOO_w4hA-dbYB6TD7t-xbkkmFDyAXfXkW8</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Fleming, Eleanor</creator><creator>Yuan, Andy H.</creator><creator>Heller, Danielle M.</creator><creator>Hochschild, Ann</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190305</creationdate><title>A bacteria-based genetic assay detects prion formation</title><author>Fleming, Eleanor ; Yuan, Andy H. ; Heller, Danielle M. ; Hochschild, Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5c1186b5afc020ae5c630bdf5c073f14af0fbd9556de07f5e290b444852f6c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assaying</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Campylobacter</topic><topic>Campylobacter - genetics</topic><topic>Campylobacter - metabolism</topic><topic>ClpB protein</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-binding protein</topic><topic>Domains</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes, Reporter</topic><topic>Genetic Techniques</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Prions - genetics</topic><topic>Prions - metabolism</topic><topic>Proteins</topic><topic>Self propagation</topic><topic>Single-stranded DNA</topic><topic>Single-stranded DNA-binding protein</topic><topic>Transcription, Genetic</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Eleanor</creatorcontrib><creatorcontrib>Yuan, Andy H.</creatorcontrib><creatorcontrib>Heller, Danielle M.</creatorcontrib><creatorcontrib>Hochschild, Ann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Eleanor</au><au>Yuan, Andy H.</au><au>Heller, Danielle M.</au><au>Hochschild, Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bacteria-based genetic assay detects prion formation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-03-05</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>4605</spage><epage>4610</epage><pages>4605-4610</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis. Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30782808</pmid><doi>10.1073/pnas.1817711116</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-03, Vol.116 (10), p.4605-4610
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410773
source MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR
subjects Assaying
Bacteria
Biological Sciences
Campylobacter
Campylobacter - genetics
Campylobacter - metabolism
ClpB protein
Deoxyribonucleic acid
DNA
DNA-binding protein
Domains
Escherichia coli - genetics
Escherichia coli - metabolism
Genes, Reporter
Genetic Techniques
Neurodegenerative diseases
Neurological diseases
Prion protein
Prions
Prions - genetics
Prions - metabolism
Proteins
Self propagation
Single-stranded DNA
Single-stranded DNA-binding protein
Transcription, Genetic
Yeast
Yeasts
title A bacteria-based genetic assay detects prion formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bacteria-based%20genetic%20assay%20detects%20prion%20formation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fleming,%20Eleanor&rft.date=2019-03-05&rft.volume=116&rft.issue=10&rft.spage=4605&rft.epage=4610&rft.pages=4605-4610&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1817711116&rft_dat=%3Cjstor_pubme%3E26683134%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194140765&rft_id=info:pmid/30782808&rft_jstor_id=26683134&rfr_iscdi=true