Panic results in unique molecular and network changes in the amygdala that facilitate fear responses

Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2020-02, Vol.25 (2), p.442-460
Hauptverfasser: Molosh, A. I., Dustrude, E. T., Lukkes, J. L., Fitz, S. D., Caliman, I. F., Abreu, A. R. R., Dietrich, A. D., Truitt, W. A., Ver Donck, L., Ceusters, M., Kent, J. M., Johnson, P. L., Shekhar, A .
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 2
container_start_page 442
container_title Molecular psychiatry
container_volume 25
creator Molosh, A. I.
Dustrude, E. T.
Lukkes, J. L.
Fitz, S. D.
Caliman, I. F.
Abreu, A. R. R.
Dietrich, A. D.
Truitt, W. A.
Ver Donck, L.
Ceusters, M.
Kent, J. M.
Johnson, P. L.
Shekhar, A .
description Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.
doi_str_mv 10.1038/s41380-018-0119-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611967128</galeid><sourcerecordid>A611967128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-1286f32fd329b4bfebf8c67704785ae01f5b1e10553d5af7010bb4349415b5083</originalsourceid><addsrcrecordid>eNp9kkFv1DAQhS0EomXhB3BBkbhwSbFjO_ZekKoKClIlOMDZcpzxrotjL3YC6r9ntltKiwBFVpzM9yael0fIc0ZPGOX6dRWMa9pSpnGxdUsfkGMmVN9KqfRD3HO5bgXT4og8qfWS0n1RPiZHnDKqORPHZPxkU3BNgbrEuTYhNUsK3xZophzBLdGWxqaxSTD_yOVr47Y2beCam7fQ2OlqM9po8cHOjbcuxDDbGRoPKMSmu5wq1KfkkbexwrOb-4p8eff289n79uLj-Yez04vWyV7OLet073nnR96tBzF4GLx2vVJUKC0tUOblwIBRKfkorVc4xDAILtaCyUHiQCvy5tB3twwTjA7SXGw0uxImW65MtsHcr6SwNZv83fQC_cS2K_LqpkHJaEKdzRSqgxhtgrxU01Gtleg57xF9-Qd6mZeScDzTocsKkbX6L8UFp52Q3R1qYyOYkHzG07n9p81pjz-2V2gNUid_ofAaYQouJ_AB398TsIPAlVxrAX_rBKNmHyBzCJDBAJl9gAxFzYu7Ft4qfiUGge4AVCxhFsrvif7d9ScWF87h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343024527</pqid></control><display><type>article</type><title>Panic results in unique molecular and network changes in the amygdala that facilitate fear responses</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Molosh, A. I. ; Dustrude, E. T. ; Lukkes, J. L. ; Fitz, S. D. ; Caliman, I. F. ; Abreu, A. R. R. ; Dietrich, A. D. ; Truitt, W. A. ; Ver Donck, L. ; Ceusters, M. ; Kent, J. M. ; Johnson, P. L. ; Shekhar, A .</creator><creatorcontrib>Molosh, A. I. ; Dustrude, E. T. ; Lukkes, J. L. ; Fitz, S. D. ; Caliman, I. F. ; Abreu, A. R. R. ; Dietrich, A. D. ; Truitt, W. A. ; Ver Donck, L. ; Ceusters, M. ; Kent, J. M. ; Johnson, P. L. ; Shekhar, A .</creatorcontrib><description>Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-018-0119-0</identifier><identifier>PMID: 30108314</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/19 ; 38/61 ; 38/77 ; 42/35 ; 631/337 ; 631/378 ; 82/1 ; 9/74 ; Activation ; Allosteric properties ; Amygdala ; Amygdala - metabolism ; Animals ; Anxiety ; Basolateral Nuclear Complex - metabolism ; Behavioral Sciences ; Biological Psychology ; Brain - metabolism ; Brain slice preparation ; Cortex (frontal) ; Extinction behavior ; Extinction, Psychological - physiology ; Fear ; Fear - physiology ; Fear conditioning ; Frontal Lobe - metabolism ; GABA ; Glutamate ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Glutamic acid receptors (metabotropic) ; Hypothalamus ; Inhibition, Psychological ; Lactic acid ; Male ; Medicine ; Medicine &amp; Public Health ; Mental disorders ; Neurosciences ; Neurotransmission ; Optogenetics - methods ; Panic ; Panic - physiology ; Periaqueductal gray area ; Pharmaceutical industry ; Pharmacotherapy ; Post traumatic stress disorder ; Psychiatry ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate - metabolism ; Remission ; Sodium lactate ; Synaptic transmission ; Synaptic Transmission - physiology ; γ-Aminobutyric acid</subject><ispartof>Molecular psychiatry, 2020-02, Vol.25 (2), p.442-460</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2018© Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>Macmillan Publishers Limited, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-1286f32fd329b4bfebf8c67704785ae01f5b1e10553d5af7010bb4349415b5083</citedby><cites>FETCH-LOGICAL-c565t-1286f32fd329b4bfebf8c67704785ae01f5b1e10553d5af7010bb4349415b5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-018-0119-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-018-0119-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30108314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molosh, A. I.</creatorcontrib><creatorcontrib>Dustrude, E. T.</creatorcontrib><creatorcontrib>Lukkes, J. L.</creatorcontrib><creatorcontrib>Fitz, S. D.</creatorcontrib><creatorcontrib>Caliman, I. F.</creatorcontrib><creatorcontrib>Abreu, A. R. R.</creatorcontrib><creatorcontrib>Dietrich, A. D.</creatorcontrib><creatorcontrib>Truitt, W. A.</creatorcontrib><creatorcontrib>Ver Donck, L.</creatorcontrib><creatorcontrib>Ceusters, M.</creatorcontrib><creatorcontrib>Kent, J. M.</creatorcontrib><creatorcontrib>Johnson, P. L.</creatorcontrib><creatorcontrib>Shekhar, A .</creatorcontrib><title>Panic results in unique molecular and network changes in the amygdala that facilitate fear responses</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.</description><subject>13/1</subject><subject>13/51</subject><subject>14/19</subject><subject>38/61</subject><subject>38/77</subject><subject>42/35</subject><subject>631/337</subject><subject>631/378</subject><subject>82/1</subject><subject>9/74</subject><subject>Activation</subject><subject>Allosteric properties</subject><subject>Amygdala</subject><subject>Amygdala - metabolism</subject><subject>Animals</subject><subject>Anxiety</subject><subject>Basolateral Nuclear Complex - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain - metabolism</subject><subject>Brain slice preparation</subject><subject>Cortex (frontal)</subject><subject>Extinction behavior</subject><subject>Extinction, Psychological - physiology</subject><subject>Fear</subject><subject>Fear - physiology</subject><subject>Fear conditioning</subject><subject>Frontal Lobe - metabolism</subject><subject>GABA</subject><subject>Glutamate</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Hypothalamus</subject><subject>Inhibition, Psychological</subject><subject>Lactic acid</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental disorders</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Optogenetics - methods</subject><subject>Panic</subject><subject>Panic - physiology</subject><subject>Periaqueductal gray area</subject><subject>Pharmaceutical industry</subject><subject>Pharmacotherapy</subject><subject>Post traumatic stress disorder</subject><subject>Psychiatry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Remission</subject><subject>Sodium lactate</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>γ-Aminobutyric acid</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kkFv1DAQhS0EomXhB3BBkbhwSbFjO_ZekKoKClIlOMDZcpzxrotjL3YC6r9ntltKiwBFVpzM9yael0fIc0ZPGOX6dRWMa9pSpnGxdUsfkGMmVN9KqfRD3HO5bgXT4og8qfWS0n1RPiZHnDKqORPHZPxkU3BNgbrEuTYhNUsK3xZophzBLdGWxqaxSTD_yOVr47Y2beCam7fQ2OlqM9po8cHOjbcuxDDbGRoPKMSmu5wq1KfkkbexwrOb-4p8eff289n79uLj-Yez04vWyV7OLet073nnR96tBzF4GLx2vVJUKC0tUOblwIBRKfkorVc4xDAILtaCyUHiQCvy5tB3twwTjA7SXGw0uxImW65MtsHcr6SwNZv83fQC_cS2K_LqpkHJaEKdzRSqgxhtgrxU01Gtleg57xF9-Qd6mZeScDzTocsKkbX6L8UFp52Q3R1qYyOYkHzG07n9p81pjz-2V2gNUid_ofAaYQouJ_AB398TsIPAlVxrAX_rBKNmHyBzCJDBAJl9gAxFzYu7Ft4qfiUGge4AVCxhFsrvif7d9ScWF87h</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Molosh, A. I.</creator><creator>Dustrude, E. T.</creator><creator>Lukkes, J. L.</creator><creator>Fitz, S. D.</creator><creator>Caliman, I. F.</creator><creator>Abreu, A. R. R.</creator><creator>Dietrich, A. D.</creator><creator>Truitt, W. A.</creator><creator>Ver Donck, L.</creator><creator>Ceusters, M.</creator><creator>Kent, J. M.</creator><creator>Johnson, P. L.</creator><creator>Shekhar, A .</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>Panic results in unique molecular and network changes in the amygdala that facilitate fear responses</title><author>Molosh, A. I. ; Dustrude, E. T. ; Lukkes, J. L. ; Fitz, S. D. ; Caliman, I. F. ; Abreu, A. R. R. ; Dietrich, A. D. ; Truitt, W. A. ; Ver Donck, L. ; Ceusters, M. ; Kent, J. M. ; Johnson, P. L. ; Shekhar, A .</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-1286f32fd329b4bfebf8c67704785ae01f5b1e10553d5af7010bb4349415b5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/19</topic><topic>38/61</topic><topic>38/77</topic><topic>42/35</topic><topic>631/337</topic><topic>631/378</topic><topic>82/1</topic><topic>9/74</topic><topic>Activation</topic><topic>Allosteric properties</topic><topic>Amygdala</topic><topic>Amygdala - metabolism</topic><topic>Animals</topic><topic>Anxiety</topic><topic>Basolateral Nuclear Complex - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain - metabolism</topic><topic>Brain slice preparation</topic><topic>Cortex (frontal)</topic><topic>Extinction behavior</topic><topic>Extinction, Psychological - physiology</topic><topic>Fear</topic><topic>Fear - physiology</topic><topic>Fear conditioning</topic><topic>Frontal Lobe - metabolism</topic><topic>GABA</topic><topic>Glutamate</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Hypothalamus</topic><topic>Inhibition, Psychological</topic><topic>Lactic acid</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental disorders</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Optogenetics - methods</topic><topic>Panic</topic><topic>Panic - physiology</topic><topic>Periaqueductal gray area</topic><topic>Pharmaceutical industry</topic><topic>Pharmacotherapy</topic><topic>Post traumatic stress disorder</topic><topic>Psychiatry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Remission</topic><topic>Sodium lactate</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molosh, A. I.</creatorcontrib><creatorcontrib>Dustrude, E. T.</creatorcontrib><creatorcontrib>Lukkes, J. L.</creatorcontrib><creatorcontrib>Fitz, S. D.</creatorcontrib><creatorcontrib>Caliman, I. F.</creatorcontrib><creatorcontrib>Abreu, A. R. R.</creatorcontrib><creatorcontrib>Dietrich, A. D.</creatorcontrib><creatorcontrib>Truitt, W. A.</creatorcontrib><creatorcontrib>Ver Donck, L.</creatorcontrib><creatorcontrib>Ceusters, M.</creatorcontrib><creatorcontrib>Kent, J. M.</creatorcontrib><creatorcontrib>Johnson, P. L.</creatorcontrib><creatorcontrib>Shekhar, A .</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molosh, A. I.</au><au>Dustrude, E. T.</au><au>Lukkes, J. L.</au><au>Fitz, S. D.</au><au>Caliman, I. F.</au><au>Abreu, A. R. R.</au><au>Dietrich, A. D.</au><au>Truitt, W. A.</au><au>Ver Donck, L.</au><au>Ceusters, M.</au><au>Kent, J. M.</au><au>Johnson, P. L.</au><au>Shekhar, A .</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Panic results in unique molecular and network changes in the amygdala that facilitate fear responses</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>442</spage><epage>460</epage><pages>442-460</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30108314</pmid><doi>10.1038/s41380-018-0119-0</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2020-02, Vol.25 (2), p.442-460
issn 1359-4184
1476-5578
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410355
source MEDLINE; SpringerLink Journals
subjects 13/1
13/51
14/19
38/61
38/77
42/35
631/337
631/378
82/1
9/74
Activation
Allosteric properties
Amygdala
Amygdala - metabolism
Animals
Anxiety
Basolateral Nuclear Complex - metabolism
Behavioral Sciences
Biological Psychology
Brain - metabolism
Brain slice preparation
Cortex (frontal)
Extinction behavior
Extinction, Psychological - physiology
Fear
Fear - physiology
Fear conditioning
Frontal Lobe - metabolism
GABA
Glutamate
Glutamatergic transmission
Glutamic Acid - metabolism
Glutamic acid receptors (metabotropic)
Hypothalamus
Inhibition, Psychological
Lactic acid
Male
Medicine
Medicine & Public Health
Mental disorders
Neurosciences
Neurotransmission
Optogenetics - methods
Panic
Panic - physiology
Periaqueductal gray area
Pharmaceutical industry
Pharmacotherapy
Post traumatic stress disorder
Psychiatry
Rats
Rats, Sprague-Dawley
Receptors, Metabotropic Glutamate - metabolism
Remission
Sodium lactate
Synaptic transmission
Synaptic Transmission - physiology
γ-Aminobutyric acid
title Panic results in unique molecular and network changes in the amygdala that facilitate fear responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Panic%20results%20in%20unique%20molecular%20and%20network%20changes%20in%20the%20amygdala%20that%20facilitate%20fear%20responses&rft.jtitle=Molecular%20psychiatry&rft.au=Molosh,%20A.%20I.&rft.date=2020-02-01&rft.volume=25&rft.issue=2&rft.spage=442&rft.epage=460&rft.pages=442-460&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-018-0119-0&rft_dat=%3Cgale_pubme%3EA611967128%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343024527&rft_id=info:pmid/30108314&rft_galeid=A611967128&rfr_iscdi=true