The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a

Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2019-02, Vol.10 (2), p.169
Hauptverfasser: van Aelst, Kara, Martínez-Santiago, Carlos J, Cross, Stephen J, Szczelkun, Mark D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 169
container_title Genes
container_volume 10
creator van Aelst, Kara
Martínez-Santiago, Carlos J
Cross, Stephen J
Szczelkun, Mark D
description Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.
doi_str_mv 10.3390/genes10020169
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6409811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548515249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-64e2c771112cd84b4f1e97040e489c6ddd5f4bf9517f93b212a49307e8cebbcf3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoKtWjVwl48bKaSbLd3Ysga_2AolLrOWSzk7qy3dRkW-h_b-oX6lxmYH7zeMMj5AjYmRAFO59hhwEY4wyGxRbZ5ywTiZQ83f4175HDEF5ZLBlBlu6SPcFyEELm-6SZviAdWYump87Sq_tLOnUL17rZmrqOPlQB_QprOtE9hg0xScbOLei183PdNxHRXf1x9tT7zVi2qFd6hrRa03Jy9_Q4oaUOwPUB2bG6DXj41Qfk-Xo0LW-T8cPNXXk5ToyEtE-GErnJMgDgps5lJS1gkUXrKPPCDOu6Tq2sbJFCZgtR8agsC8EyzA1WlbFiQC4-dRfLao61wS4aa9XCN3Pt18rpRv3ddM2LmrmVGkpW5ABR4PRLwLu3JYZezZtgsG11h24ZFIc8Y1wCkxE9-Ye-uqXv4nuKpzJPIeXR3IAkn5TxLgSP9scMMLXJUf3JMfLHvz_4ob9TE-8PR5bf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548515249</pqid></control><display><type>article</type><title>The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a</title><source>Electronic Journals Library</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>van Aelst, Kara ; Martínez-Santiago, Carlos J ; Cross, Stephen J ; Szczelkun, Mark D</creator><creatorcontrib>van Aelst, Kara ; Martínez-Santiago, Carlos J ; Cross, Stephen J ; Szczelkun, Mark D</creatorcontrib><description>Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be &gt;50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event &gt;15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes10020169</identifier><identifier>PMID: 30813348</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bacterial Proteins - metabolism ; Circular DNA ; CRISPR ; CRISPR-Cas Systems ; DNA, Superhelical - chemistry ; DNA, Superhelical - metabolism ; Endodeoxyribonucleases - metabolism ; Enzymes ; Kinetics ; Mutation ; R-Loop Structures ; Supercoiling</subject><ispartof>Genes, 2019-02, Vol.10 (2), p.169</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-64e2c771112cd84b4f1e97040e489c6ddd5f4bf9517f93b212a49307e8cebbcf3</citedby><cites>FETCH-LOGICAL-c415t-64e2c771112cd84b4f1e97040e489c6ddd5f4bf9517f93b212a49307e8cebbcf3</cites><orcidid>0000-0003-3565-0479 ; 0000-0002-2501-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30813348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Aelst, Kara</creatorcontrib><creatorcontrib>Martínez-Santiago, Carlos J</creatorcontrib><creatorcontrib>Cross, Stephen J</creatorcontrib><creatorcontrib>Szczelkun, Mark D</creatorcontrib><title>The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be &gt;50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event &gt;15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.</description><subject>Bacterial Proteins - metabolism</subject><subject>Circular DNA</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>DNA, Superhelical - chemistry</subject><subject>DNA, Superhelical - metabolism</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Enzymes</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>R-Loop Structures</subject><subject>Supercoiling</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1LAzEQxYMoKtWjVwl48bKaSbLd3Ysga_2AolLrOWSzk7qy3dRkW-h_b-oX6lxmYH7zeMMj5AjYmRAFO59hhwEY4wyGxRbZ5ywTiZQ83f4175HDEF5ZLBlBlu6SPcFyEELm-6SZviAdWYump87Sq_tLOnUL17rZmrqOPlQB_QprOtE9hg0xScbOLei183PdNxHRXf1x9tT7zVi2qFd6hrRa03Jy9_Q4oaUOwPUB2bG6DXj41Qfk-Xo0LW-T8cPNXXk5ToyEtE-GErnJMgDgps5lJS1gkUXrKPPCDOu6Tq2sbJFCZgtR8agsC8EyzA1WlbFiQC4-dRfLao61wS4aa9XCN3Pt18rpRv3ddM2LmrmVGkpW5ABR4PRLwLu3JYZezZtgsG11h24ZFIc8Y1wCkxE9-Ye-uqXv4nuKpzJPIeXR3IAkn5TxLgSP9scMMLXJUf3JMfLHvz_4ob9TE-8PR5bf</recordid><startdate>20190222</startdate><enddate>20190222</enddate><creator>van Aelst, Kara</creator><creator>Martínez-Santiago, Carlos J</creator><creator>Cross, Stephen J</creator><creator>Szczelkun, Mark D</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3565-0479</orcidid><orcidid>https://orcid.org/0000-0002-2501-6602</orcidid></search><sort><creationdate>20190222</creationdate><title>The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a</title><author>van Aelst, Kara ; Martínez-Santiago, Carlos J ; Cross, Stephen J ; Szczelkun, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-64e2c771112cd84b4f1e97040e489c6ddd5f4bf9517f93b212a49307e8cebbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Circular DNA</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>DNA, Superhelical - chemistry</topic><topic>DNA, Superhelical - metabolism</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Enzymes</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>R-Loop Structures</topic><topic>Supercoiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Aelst, Kara</creatorcontrib><creatorcontrib>Martínez-Santiago, Carlos J</creatorcontrib><creatorcontrib>Cross, Stephen J</creatorcontrib><creatorcontrib>Szczelkun, Mark D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Aelst, Kara</au><au>Martínez-Santiago, Carlos J</au><au>Cross, Stephen J</au><au>Szczelkun, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2019-02-22</date><risdate>2019</risdate><volume>10</volume><issue>2</issue><spage>169</spage><pages>169-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be &gt;50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event &gt;15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30813348</pmid><doi>10.3390/genes10020169</doi><orcidid>https://orcid.org/0000-0003-3565-0479</orcidid><orcidid>https://orcid.org/0000-0002-2501-6602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2019-02, Vol.10 (2), p.169
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6409811
source Electronic Journals Library; MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; PubMed Central; PubMed Central Open Access
subjects Bacterial Proteins - metabolism
Circular DNA
CRISPR
CRISPR-Cas Systems
DNA, Superhelical - chemistry
DNA, Superhelical - metabolism
Endodeoxyribonucleases - metabolism
Enzymes
Kinetics
Mutation
R-Loop Structures
Supercoiling
title The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20DNA%20Topology%20on%20Observed%20Rates%20of%20R-Loop%20Formation%20and%20DNA%20Strand%20Cleavage%20by%20CRISPR%20Cas12a&rft.jtitle=Genes&rft.au=van%20Aelst,%20Kara&rft.date=2019-02-22&rft.volume=10&rft.issue=2&rft.spage=169&rft.pages=169-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes10020169&rft_dat=%3Cproquest_pubme%3E2548515249%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548515249&rft_id=info:pmid/30813348&rfr_iscdi=true