Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes
There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biol...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2019-03, Vol.52 (C), p.42-56 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | C |
container_start_page | 42 |
container_title | Metabolic engineering |
container_volume | 52 |
creator | Broddrick, Jared T. Welkie, David G. Jallet, Denis Golden, Susan S. Peers, Graham Palsson, Bernhard O. |
description | There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.
•Light uptake and oxygen evolution accurately constrain phototrophic metabolism.•Metabolic fluxes predicted by these constraints recapitulate experimental results.•Alternative electron transport and photodamage repair rates are quantified.•Photo- and photomixtotrophic 2,3-butanediol engineering designs are characterized.•The constraints can be extended to genome-scale models of any phototroph. |
doi_str_mv | 10.1016/j.ymben.2018.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6407710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717618303288</els_id><sourcerecordid>2135135005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-f487dd0abf3979901adfc92deef381c694bd6c13137122c14d9b6718948c2d703</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYso7h_9BIIEn_Rham7TNs2DC8vgusKAC-pzSJPbToa2GZPMwHx7U7sO6oMQSEh-9-See7LsFdAcKNTvd_lpbHHKCwpNDpBTCk-yS6CiXnFoyqfnM68vsqsQdgmASsDz7ILRkolSlJfZ8ODRWB3t1JO4RTJiVK0brCZa7VVrBxstBuI68vU0od467bQ-BIKDm3oV0-lhvSZclAVRRu0jGhIdMbbr0OMUyWD7bSQeeztieJE969QQ8OXjfp19v_v4bX2_2nz59Hl9u1npqqBx1ZUNN4aqtmOCC0FBmU6LwiB2rAFdi7I1tQYGjENRaCiNaOtkWZSNLgyn7Dq7WXT3h3ZEo1MjXg1y7-2o_Ek6ZeXfL5Pdyt4dZV1SzmEWeLMIuBCtDNrGZF27KU0gSqghDbZK0LsF2v6jfX-7kfMdLYBzVjVHSOzbx468-3HAEOVog8ZhUBO6Q5AFsCotSmdZtqDauxA8dmdtoHIOXu7kr-DlHLwEkCnXVPX6T8vnmt9JJ-DDAmAa_NGin23hpFP6fnZlnP3vBz8BdSnAGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135135005</pqid></control><display><type>article</type><title>Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Broddrick, Jared T. ; Welkie, David G. ; Jallet, Denis ; Golden, Susan S. ; Peers, Graham ; Palsson, Bernhard O.</creator><creatorcontrib>Broddrick, Jared T. ; Welkie, David G. ; Jallet, Denis ; Golden, Susan S. ; Peers, Graham ; Palsson, Bernhard O. ; Colorado State Univ., Fort Collins, CO (United States) ; J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><description>There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.
•Light uptake and oxygen evolution accurately constrain phototrophic metabolism.•Metabolic fluxes predicted by these constraints recapitulate experimental results.•Alternative electron transport and photodamage repair rates are quantified.•Photo- and photomixtotrophic 2,3-butanediol engineering designs are characterized.•The constraints can be extended to genome-scale models of any phototroph.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2018.11.001</identifier><identifier>PMID: 30439494</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Acclimatization ; Biotechnology ; Biotechnology & Applied Microbiology ; Butylene Glycols - metabolism ; Chlorophyll - metabolism ; Computer Simulation ; Constraint based modeling ; Cyanobacteria engineering ; Energy Metabolism ; Flux balance analysis ; Genome ; Genome-scale modeling ; Life Sciences ; Light ; Metabolic Engineering - methods ; Metabolic Flux Analysis ; Oxygen - metabolism ; Photosynthesis ; Photosynthesis - genetics ; Pigmentation ; Synechococcus - genetics ; Synechococcus - metabolism ; Synechococcus - radiation effects ; Synechococcus elongatus</subject><ispartof>Metabolic engineering, 2019-03, Vol.52 (C), p.42-56</ispartof><rights>2018 International Metabolic Engineering Society</rights><rights>Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-f487dd0abf3979901adfc92deef381c694bd6c13137122c14d9b6718948c2d703</citedby><cites>FETCH-LOGICAL-c520t-f487dd0abf3979901adfc92deef381c694bd6c13137122c14d9b6718948c2d703</cites><orcidid>0000-0003-0201-5671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2018.11.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30439494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02177358$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1611095$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Broddrick, Jared T.</creatorcontrib><creatorcontrib>Welkie, David G.</creatorcontrib><creatorcontrib>Jallet, Denis</creatorcontrib><creatorcontrib>Golden, Susan S.</creatorcontrib><creatorcontrib>Peers, Graham</creatorcontrib><creatorcontrib>Palsson, Bernhard O.</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><title>Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.
•Light uptake and oxygen evolution accurately constrain phototrophic metabolism.•Metabolic fluxes predicted by these constraints recapitulate experimental results.•Alternative electron transport and photodamage repair rates are quantified.•Photo- and photomixtotrophic 2,3-butanediol engineering designs are characterized.•The constraints can be extended to genome-scale models of any phototroph.</description><subject>Acclimatization</subject><subject>Biotechnology</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Butylene Glycols - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>Computer Simulation</subject><subject>Constraint based modeling</subject><subject>Cyanobacteria engineering</subject><subject>Energy Metabolism</subject><subject>Flux balance analysis</subject><subject>Genome</subject><subject>Genome-scale modeling</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Flux Analysis</subject><subject>Oxygen - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Pigmentation</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus - radiation effects</subject><subject>Synechococcus elongatus</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1DAUxYso7h_9BIIEn_Rham7TNs2DC8vgusKAC-pzSJPbToa2GZPMwHx7U7sO6oMQSEh-9-See7LsFdAcKNTvd_lpbHHKCwpNDpBTCk-yS6CiXnFoyqfnM68vsqsQdgmASsDz7ILRkolSlJfZ8ODRWB3t1JO4RTJiVK0brCZa7VVrBxstBuI68vU0od467bQ-BIKDm3oV0-lhvSZclAVRRu0jGhIdMbbr0OMUyWD7bSQeeztieJE969QQ8OXjfp19v_v4bX2_2nz59Hl9u1npqqBx1ZUNN4aqtmOCC0FBmU6LwiB2rAFdi7I1tQYGjENRaCiNaOtkWZSNLgyn7Dq7WXT3h3ZEo1MjXg1y7-2o_Ek6ZeXfL5Pdyt4dZV1SzmEWeLMIuBCtDNrGZF27KU0gSqghDbZK0LsF2v6jfX-7kfMdLYBzVjVHSOzbx468-3HAEOVog8ZhUBO6Q5AFsCotSmdZtqDauxA8dmdtoHIOXu7kr-DlHLwEkCnXVPX6T8vnmt9JJ-DDAmAa_NGin23hpFP6fnZlnP3vBz8BdSnAGg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Broddrick, Jared T.</creator><creator>Welkie, David G.</creator><creator>Jallet, Denis</creator><creator>Golden, Susan S.</creator><creator>Peers, Graham</creator><creator>Palsson, Bernhard O.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0201-5671</orcidid></search><sort><creationdate>20190301</creationdate><title>Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes</title><author>Broddrick, Jared T. ; Welkie, David G. ; Jallet, Denis ; Golden, Susan S. ; Peers, Graham ; Palsson, Bernhard O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-f487dd0abf3979901adfc92deef381c694bd6c13137122c14d9b6718948c2d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acclimatization</topic><topic>Biotechnology</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Butylene Glycols - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>Computer Simulation</topic><topic>Constraint based modeling</topic><topic>Cyanobacteria engineering</topic><topic>Energy Metabolism</topic><topic>Flux balance analysis</topic><topic>Genome</topic><topic>Genome-scale modeling</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Flux Analysis</topic><topic>Oxygen - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Pigmentation</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus - radiation effects</topic><topic>Synechococcus elongatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broddrick, Jared T.</creatorcontrib><creatorcontrib>Welkie, David G.</creatorcontrib><creatorcontrib>Jallet, Denis</creatorcontrib><creatorcontrib>Golden, Susan S.</creatorcontrib><creatorcontrib>Peers, Graham</creatorcontrib><creatorcontrib>Palsson, Bernhard O.</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broddrick, Jared T.</au><au>Welkie, David G.</au><au>Jallet, Denis</au><au>Golden, Susan S.</au><au>Peers, Graham</au><au>Palsson, Bernhard O.</au><aucorp>Colorado State Univ., Fort Collins, CO (United States)</aucorp><aucorp>J. Craig Venter Inst., Inc., Rockville, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>52</volume><issue>C</issue><spage>42</spage><epage>56</epage><pages>42-56</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.
•Light uptake and oxygen evolution accurately constrain phototrophic metabolism.•Metabolic fluxes predicted by these constraints recapitulate experimental results.•Alternative electron transport and photodamage repair rates are quantified.•Photo- and photomixtotrophic 2,3-butanediol engineering designs are characterized.•The constraints can be extended to genome-scale models of any phototroph.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>30439494</pmid><doi>10.1016/j.ymben.2018.11.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0201-5671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2019-03, Vol.52 (C), p.42-56 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6407710 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acclimatization Biotechnology Biotechnology & Applied Microbiology Butylene Glycols - metabolism Chlorophyll - metabolism Computer Simulation Constraint based modeling Cyanobacteria engineering Energy Metabolism Flux balance analysis Genome Genome-scale modeling Life Sciences Light Metabolic Engineering - methods Metabolic Flux Analysis Oxygen - metabolism Photosynthesis Photosynthesis - genetics Pigmentation Synechococcus - genetics Synechococcus - metabolism Synechococcus - radiation effects Synechococcus elongatus |
title | Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20metabolic%20capabilities%20of%20Synechococcus%20elongatus%20PCC%207942%20adapted%20to%20different%20light%20regimes&rft.jtitle=Metabolic%20engineering&rft.au=Broddrick,%20Jared%20T.&rft.aucorp=Colorado%20State%20Univ.,%20Fort%20Collins,%20CO%20(United%20States)&rft.date=2019-03-01&rft.volume=52&rft.issue=C&rft.spage=42&rft.epage=56&rft.pages=42-56&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2018.11.001&rft_dat=%3Cproquest_pubme%3E2135135005%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135135005&rft_id=info:pmid/30439494&rft_els_id=S1096717618303288&rfr_iscdi=true |