PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source

High frequency (HF) electromagnetic fields (EMFs) have been widely used in many wireless communication devices, yet within the terahertz (THz) range, their effects on biological systems are poorly understood. In this study, electromagnetic radiation in the range of 0.3⁻19.5 × 10 Hz, generated using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2019-01, Vol.11 (2), p.162
Hauptverfasser: Perera, Palalle G Tharushi, Appadoo, Dominique R T, Cheeseman, Samuel, Wandiyanto, Jason V, Linklater, Denver, Dekiwadia, Chaitali, Truong, Vi Khanh, Tobin, Mark J, Vongsvivut, Jitraporn, Bazaka, Olha, Bazaka, Kateryna, Croft, Rodney J, Crawford, Russell J, Ivanova, Elena P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 162
container_title Cancers
container_volume 11
creator Perera, Palalle G Tharushi
Appadoo, Dominique R T
Cheeseman, Samuel
Wandiyanto, Jason V
Linklater, Denver
Dekiwadia, Chaitali
Truong, Vi Khanh
Tobin, Mark J
Vongsvivut, Jitraporn
Bazaka, Olha
Bazaka, Kateryna
Croft, Rodney J
Crawford, Russell J
Ivanova, Elena P
description High frequency (HF) electromagnetic fields (EMFs) have been widely used in many wireless communication devices, yet within the terahertz (THz) range, their effects on biological systems are poorly understood. In this study, electromagnetic radiation in the range of 0.3⁻19.5 × 10 Hz, generated using a synchrotron light source, was used to investigate the response of PC 12 neuron-like pheochromocytoma cells to THz irradiation. The PC 12 cells remained viable and physiologically healthy, as confirmed by a panel of biological assays; however, exposure to THz radiation for 10 min at 25.2 ± 0.4 °C was sufficient to induce a temporary increase in their cell membrane permeability. High-resolution transmission electron microscopy (TEM) confirmed cell membrane permeabilization via visualisation of the translocation of silica nanospheres ( = 23.5 ± 0.2 nm) and their clusters ( = 63 nm) into the PC 12 cells. Analysis of scanning electron microscopy (SEM) micrographs revealed the formation of atypically large (up to 1 µm) blebs on the surface of PC 12 cells when exposed to THz radiation. Long-term analysis showed no substantial differences in metabolic activity between the PC 12 cells exposed to THz radiation and untreated cells; however, a higher population of the THz-treated PC 12 cells responded to the nerve growth factor (NGF) by extending longer neurites (up to 0⁻20 µm) compared to the untreated PC12 cells (up to 20 µm). These findings present implications for the development of nanoparticle-mediated drug delivery and gene therapy strategies since THz irradiation can promote nanoparticle uptake by cells without causing apoptosis, necrosis or physiological damage, as well as provide a deeper fundamental insight into the biological effects of environmental exposure of cells to electromagnetic radiation of super high frequencies.
doi_str_mv 10.3390/cancers11020162
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6406661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547490185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d478657b7a1b3425f96649bfb778c8674cc3fc7004af5fa23680822b3f080dee3</originalsourceid><addsrcrecordid>eNpdkctLJDEQxoPssop63psEvOxltPLopPsiyLA-QFAc9xzSmYrdMp2MSbcw-9cb8YGaS4Xkqx_11UfIbwZHQjRw7GxwmDJjwIEpvkV2OGg-U6qRPz7dt8l-zg9QjhBMK_2LbAvQ0IBSO6S7mVPG6U2H0XUpDtFtxjhYOsfVit5iXseQkY6RLqY1JnrR33f0LOHjhMFt6B0m22Ea_9Nbu-zt2MdAfaHQxSa84MZUHhZxSg73yE9vVxn33-ou-Xf2925-Mbu6Pr-cn17NnORsnC2lrlWlW21ZKySvfKOUbFrfal27WmnpnPBOA0jrK2-5UDXUnLfCQw1LRLFLTl6566kdcOkwjMmuzDr1g00bE21vvv6EvjP38ckoWRaiWAH8eQOkWGzm0Qx9dmUdNmCcsuFMN1UFutZFevhN-lC8hmLP8Epq2QCrq6I6flW5FHNO6D-GYWBegjTfgiwdB589fOjfYxPPmL-bEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547490185</pqid></control><display><type>article</type><title>PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Perera, Palalle G Tharushi ; Appadoo, Dominique R T ; Cheeseman, Samuel ; Wandiyanto, Jason V ; Linklater, Denver ; Dekiwadia, Chaitali ; Truong, Vi Khanh ; Tobin, Mark J ; Vongsvivut, Jitraporn ; Bazaka, Olha ; Bazaka, Kateryna ; Croft, Rodney J ; Crawford, Russell J ; Ivanova, Elena P</creator><creatorcontrib>Perera, Palalle G Tharushi ; Appadoo, Dominique R T ; Cheeseman, Samuel ; Wandiyanto, Jason V ; Linklater, Denver ; Dekiwadia, Chaitali ; Truong, Vi Khanh ; Tobin, Mark J ; Vongsvivut, Jitraporn ; Bazaka, Olha ; Bazaka, Kateryna ; Croft, Rodney J ; Crawford, Russell J ; Ivanova, Elena P</creatorcontrib><description>High frequency (HF) electromagnetic fields (EMFs) have been widely used in many wireless communication devices, yet within the terahertz (THz) range, their effects on biological systems are poorly understood. In this study, electromagnetic radiation in the range of 0.3⁻19.5 × 10 Hz, generated using a synchrotron light source, was used to investigate the response of PC 12 neuron-like pheochromocytoma cells to THz irradiation. The PC 12 cells remained viable and physiologically healthy, as confirmed by a panel of biological assays; however, exposure to THz radiation for 10 min at 25.2 ± 0.4 °C was sufficient to induce a temporary increase in their cell membrane permeability. High-resolution transmission electron microscopy (TEM) confirmed cell membrane permeabilization via visualisation of the translocation of silica nanospheres ( = 23.5 ± 0.2 nm) and their clusters ( = 63 nm) into the PC 12 cells. Analysis of scanning electron microscopy (SEM) micrographs revealed the formation of atypically large (up to 1 µm) blebs on the surface of PC 12 cells when exposed to THz radiation. Long-term analysis showed no substantial differences in metabolic activity between the PC 12 cells exposed to THz radiation and untreated cells; however, a higher population of the THz-treated PC 12 cells responded to the nerve growth factor (NGF) by extending longer neurites (up to 0⁻20 µm) compared to the untreated PC12 cells (up to 20 µm). These findings present implications for the development of nanoparticle-mediated drug delivery and gene therapy strategies since THz irradiation can promote nanoparticle uptake by cells without causing apoptosis, necrosis or physiological damage, as well as provide a deeper fundamental insight into the biological effects of environmental exposure of cells to electromagnetic radiation of super high frequencies.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers11020162</identifier><identifier>PMID: 30709066</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Apoptosis ; Axons ; Cell membranes ; Communication devices ; Drug delivery ; Electromagnetic fields ; Electromagnetic radiation ; Gene expression ; Gene therapy ; Investigations ; Membrane permeability ; Micrography ; Nanoparticles ; Nerve growth factor ; Packaged goods ; Permeability ; Pheochromocytoma cells ; Radiation ; Scanning electron microscopy ; Stem cells ; Transmission electron microscopy</subject><ispartof>Cancers, 2019-01, Vol.11 (2), p.162</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d478657b7a1b3425f96649bfb778c8674cc3fc7004af5fa23680822b3f080dee3</citedby><cites>FETCH-LOGICAL-c421t-d478657b7a1b3425f96649bfb778c8674cc3fc7004af5fa23680822b3f080dee3</cites><orcidid>0000-0002-2787-9938 ; 0000-0002-5509-8071 ; 0000-0003-0699-3464 ; 0000-0003-1054-5285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406661/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406661/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perera, Palalle G Tharushi</creatorcontrib><creatorcontrib>Appadoo, Dominique R T</creatorcontrib><creatorcontrib>Cheeseman, Samuel</creatorcontrib><creatorcontrib>Wandiyanto, Jason V</creatorcontrib><creatorcontrib>Linklater, Denver</creatorcontrib><creatorcontrib>Dekiwadia, Chaitali</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>Tobin, Mark J</creatorcontrib><creatorcontrib>Vongsvivut, Jitraporn</creatorcontrib><creatorcontrib>Bazaka, Olha</creatorcontrib><creatorcontrib>Bazaka, Kateryna</creatorcontrib><creatorcontrib>Croft, Rodney J</creatorcontrib><creatorcontrib>Crawford, Russell J</creatorcontrib><creatorcontrib>Ivanova, Elena P</creatorcontrib><title>PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>High frequency (HF) electromagnetic fields (EMFs) have been widely used in many wireless communication devices, yet within the terahertz (THz) range, their effects on biological systems are poorly understood. In this study, electromagnetic radiation in the range of 0.3⁻19.5 × 10 Hz, generated using a synchrotron light source, was used to investigate the response of PC 12 neuron-like pheochromocytoma cells to THz irradiation. The PC 12 cells remained viable and physiologically healthy, as confirmed by a panel of biological assays; however, exposure to THz radiation for 10 min at 25.2 ± 0.4 °C was sufficient to induce a temporary increase in their cell membrane permeability. High-resolution transmission electron microscopy (TEM) confirmed cell membrane permeabilization via visualisation of the translocation of silica nanospheres ( = 23.5 ± 0.2 nm) and their clusters ( = 63 nm) into the PC 12 cells. Analysis of scanning electron microscopy (SEM) micrographs revealed the formation of atypically large (up to 1 µm) blebs on the surface of PC 12 cells when exposed to THz radiation. Long-term analysis showed no substantial differences in metabolic activity between the PC 12 cells exposed to THz radiation and untreated cells; however, a higher population of the THz-treated PC 12 cells responded to the nerve growth factor (NGF) by extending longer neurites (up to 0⁻20 µm) compared to the untreated PC12 cells (up to 20 µm). These findings present implications for the development of nanoparticle-mediated drug delivery and gene therapy strategies since THz irradiation can promote nanoparticle uptake by cells without causing apoptosis, necrosis or physiological damage, as well as provide a deeper fundamental insight into the biological effects of environmental exposure of cells to electromagnetic radiation of super high frequencies.</description><subject>Apoptosis</subject><subject>Axons</subject><subject>Cell membranes</subject><subject>Communication devices</subject><subject>Drug delivery</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic radiation</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Investigations</subject><subject>Membrane permeability</subject><subject>Micrography</subject><subject>Nanoparticles</subject><subject>Nerve growth factor</subject><subject>Packaged goods</subject><subject>Permeability</subject><subject>Pheochromocytoma cells</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Stem cells</subject><subject>Transmission electron microscopy</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctLJDEQxoPssop63psEvOxltPLopPsiyLA-QFAc9xzSmYrdMp2MSbcw-9cb8YGaS4Xkqx_11UfIbwZHQjRw7GxwmDJjwIEpvkV2OGg-U6qRPz7dt8l-zg9QjhBMK_2LbAvQ0IBSO6S7mVPG6U2H0XUpDtFtxjhYOsfVit5iXseQkY6RLqY1JnrR33f0LOHjhMFt6B0m22Ea_9Nbu-zt2MdAfaHQxSa84MZUHhZxSg73yE9vVxn33-ou-Xf2925-Mbu6Pr-cn17NnORsnC2lrlWlW21ZKySvfKOUbFrfal27WmnpnPBOA0jrK2-5UDXUnLfCQw1LRLFLTl6566kdcOkwjMmuzDr1g00bE21vvv6EvjP38ckoWRaiWAH8eQOkWGzm0Qx9dmUdNmCcsuFMN1UFutZFevhN-lC8hmLP8Epq2QCrq6I6flW5FHNO6D-GYWBegjTfgiwdB589fOjfYxPPmL-bEw</recordid><startdate>20190131</startdate><enddate>20190131</enddate><creator>Perera, Palalle G Tharushi</creator><creator>Appadoo, Dominique R T</creator><creator>Cheeseman, Samuel</creator><creator>Wandiyanto, Jason V</creator><creator>Linklater, Denver</creator><creator>Dekiwadia, Chaitali</creator><creator>Truong, Vi Khanh</creator><creator>Tobin, Mark J</creator><creator>Vongsvivut, Jitraporn</creator><creator>Bazaka, Olha</creator><creator>Bazaka, Kateryna</creator><creator>Croft, Rodney J</creator><creator>Crawford, Russell J</creator><creator>Ivanova, Elena P</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2787-9938</orcidid><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid><orcidid>https://orcid.org/0000-0003-0699-3464</orcidid><orcidid>https://orcid.org/0000-0003-1054-5285</orcidid></search><sort><creationdate>20190131</creationdate><title>PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source</title><author>Perera, Palalle G Tharushi ; Appadoo, Dominique R T ; Cheeseman, Samuel ; Wandiyanto, Jason V ; Linklater, Denver ; Dekiwadia, Chaitali ; Truong, Vi Khanh ; Tobin, Mark J ; Vongsvivut, Jitraporn ; Bazaka, Olha ; Bazaka, Kateryna ; Croft, Rodney J ; Crawford, Russell J ; Ivanova, Elena P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d478657b7a1b3425f96649bfb778c8674cc3fc7004af5fa23680822b3f080dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apoptosis</topic><topic>Axons</topic><topic>Cell membranes</topic><topic>Communication devices</topic><topic>Drug delivery</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic radiation</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Investigations</topic><topic>Membrane permeability</topic><topic>Micrography</topic><topic>Nanoparticles</topic><topic>Nerve growth factor</topic><topic>Packaged goods</topic><topic>Permeability</topic><topic>Pheochromocytoma cells</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Stem cells</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perera, Palalle G Tharushi</creatorcontrib><creatorcontrib>Appadoo, Dominique R T</creatorcontrib><creatorcontrib>Cheeseman, Samuel</creatorcontrib><creatorcontrib>Wandiyanto, Jason V</creatorcontrib><creatorcontrib>Linklater, Denver</creatorcontrib><creatorcontrib>Dekiwadia, Chaitali</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>Tobin, Mark J</creatorcontrib><creatorcontrib>Vongsvivut, Jitraporn</creatorcontrib><creatorcontrib>Bazaka, Olha</creatorcontrib><creatorcontrib>Bazaka, Kateryna</creatorcontrib><creatorcontrib>Croft, Rodney J</creatorcontrib><creatorcontrib>Crawford, Russell J</creatorcontrib><creatorcontrib>Ivanova, Elena P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perera, Palalle G Tharushi</au><au>Appadoo, Dominique R T</au><au>Cheeseman, Samuel</au><au>Wandiyanto, Jason V</au><au>Linklater, Denver</au><au>Dekiwadia, Chaitali</au><au>Truong, Vi Khanh</au><au>Tobin, Mark J</au><au>Vongsvivut, Jitraporn</au><au>Bazaka, Olha</au><au>Bazaka, Kateryna</au><au>Croft, Rodney J</au><au>Crawford, Russell J</au><au>Ivanova, Elena P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2019-01-31</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>162</spage><pages>162-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>High frequency (HF) electromagnetic fields (EMFs) have been widely used in many wireless communication devices, yet within the terahertz (THz) range, their effects on biological systems are poorly understood. In this study, electromagnetic radiation in the range of 0.3⁻19.5 × 10 Hz, generated using a synchrotron light source, was used to investigate the response of PC 12 neuron-like pheochromocytoma cells to THz irradiation. The PC 12 cells remained viable and physiologically healthy, as confirmed by a panel of biological assays; however, exposure to THz radiation for 10 min at 25.2 ± 0.4 °C was sufficient to induce a temporary increase in their cell membrane permeability. High-resolution transmission electron microscopy (TEM) confirmed cell membrane permeabilization via visualisation of the translocation of silica nanospheres ( = 23.5 ± 0.2 nm) and their clusters ( = 63 nm) into the PC 12 cells. Analysis of scanning electron microscopy (SEM) micrographs revealed the formation of atypically large (up to 1 µm) blebs on the surface of PC 12 cells when exposed to THz radiation. Long-term analysis showed no substantial differences in metabolic activity between the PC 12 cells exposed to THz radiation and untreated cells; however, a higher population of the THz-treated PC 12 cells responded to the nerve growth factor (NGF) by extending longer neurites (up to 0⁻20 µm) compared to the untreated PC12 cells (up to 20 µm). These findings present implications for the development of nanoparticle-mediated drug delivery and gene therapy strategies since THz irradiation can promote nanoparticle uptake by cells without causing apoptosis, necrosis or physiological damage, as well as provide a deeper fundamental insight into the biological effects of environmental exposure of cells to electromagnetic radiation of super high frequencies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30709066</pmid><doi>10.3390/cancers11020162</doi><orcidid>https://orcid.org/0000-0002-2787-9938</orcidid><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid><orcidid>https://orcid.org/0000-0003-0699-3464</orcidid><orcidid>https://orcid.org/0000-0003-1054-5285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2019-01, Vol.11 (2), p.162
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6406661
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Apoptosis
Axons
Cell membranes
Communication devices
Drug delivery
Electromagnetic fields
Electromagnetic radiation
Gene expression
Gene therapy
Investigations
Membrane permeability
Micrography
Nanoparticles
Nerve growth factor
Packaged goods
Permeability
Pheochromocytoma cells
Radiation
Scanning electron microscopy
Stem cells
Transmission electron microscopy
title PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PC%2012%20Pheochromocytoma%20Cell%20Response%20to%20Super%20High%20Frequency%20Terahertz%20Radiation%20from%20Synchrotron%20Source&rft.jtitle=Cancers&rft.au=Perera,%20Palalle%20G%20Tharushi&rft.date=2019-01-31&rft.volume=11&rft.issue=2&rft.spage=162&rft.pages=162-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers11020162&rft_dat=%3Cproquest_pubme%3E2547490185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547490185&rft_id=info:pmid/30709066&rfr_iscdi=true