Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe
Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of ger...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2019-03, Vol.211 (3), p.893-911 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 911 |
---|---|
container_issue | 3 |
container_start_page | 893 |
container_title | Genetics (Austin) |
container_volume | 211 |
creator | Plante, Samuel Labbé, Simon |
description | Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In
, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N
-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of
,
, and
transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions.
Δ
Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when
is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr
and Tyr
) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked. |
doi_str_mv | 10.1534/genetics.118.301843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179377691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4NY2lr7FwgS8MWXu-bXZpMXQYutQkHw6nPI5Wa7KbfJdrIrnH-9Oa4t1adMmM98mOFLyDvOlryR6uIOEkwxlCXnZikZN0q-IqfcKrkQWvLXL-oT8qaUe8aYto05JieSadXWzymZV2NGoNeAQ0x-ijnRn_AwR4RCrwAxhh7zAPRLzGWXph5KLNSnDa0lXcUNYB77veEWfSrVNQHS1YScxkRXoY9_cvEh9L5adqFKxzys4S056vy2wPnje0Z-XX29vfy2uPlx_f3y880iKGunBYCQ3BrpvQYfmBGN8tZ2Zh20FNxzYYNpGA9WaWEEVzxoZTfMQiVC12l5Rj4dvOO8HmATIE3ot27EOHjcueyj-7eTYu_u8m-nFVOiMVXw8VGA-WGGMrkhlgDbrU-Q5-IEb61sW215RT_8h97nGVM9r1K2bQ2zzX4jeaAC5lIQuudlOHP7WN1TrK7G6g6x1qn3L-94nnnKUf4F3KOjYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197780956</pqid></control><display><type>article</type><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Plante, Samuel ; Labbé, Simon</creator><creatorcontrib>Plante, Samuel ; Labbé, Simon</creatorcontrib><description>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In
, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N
-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of
,
, and
transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions.
Δ
Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when
is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr
and Tyr
) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.118.301843</identifier><identifier>PMID: 30647069</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Amino acids ; Biosynthesis ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell cycle ; Cell division ; Chromosomes ; Dormancy ; Enzymes ; Ferrichrome - metabolism ; Genetics ; Germination ; Glucose ; Hatches ; Investigations ; Iron ; Iron - metabolism ; Iron deficiency ; Localization ; Microscopy ; Nutrient deficiency ; Ornithine ; Oxygenase ; Peptides ; Phenotypes ; Protein Domains ; Protein Transport ; Proteins ; Residues ; Schizosaccharomyces - genetics ; Schizosaccharomyces - physiology ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - chemistry ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Spore germination ; Spores ; Spores, Fungal - genetics ; Supplements ; Yeast</subject><ispartof>Genetics (Austin), 2019-03, Vol.211 (3), p.893-911</ispartof><rights>Copyright © 2019 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Mar 2019</rights><rights>Copyright © 2019 by the Genetics Society of America 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</citedby><cites>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</cites><orcidid>0000-0002-4947-523X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30647069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plante, Samuel</creatorcontrib><creatorcontrib>Labbé, Simon</creatorcontrib><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In
, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N
-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of
,
, and
transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions.
Δ
Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when
is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr
and Tyr
) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</description><subject>Amino acids</subject><subject>Biosynthesis</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Dormancy</subject><subject>Enzymes</subject><subject>Ferrichrome - metabolism</subject><subject>Genetics</subject><subject>Germination</subject><subject>Glucose</subject><subject>Hatches</subject><subject>Investigations</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron deficiency</subject><subject>Localization</subject><subject>Microscopy</subject><subject>Nutrient deficiency</subject><subject>Ornithine</subject><subject>Oxygenase</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Protein Domains</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Residues</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - physiology</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Spore germination</subject><subject>Spores</subject><subject>Spores, Fungal - genetics</subject><subject>Supplements</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd9rFDEQx4NY2lr7FwgS8MWXu-bXZpMXQYutQkHw6nPI5Wa7KbfJdrIrnH-9Oa4t1adMmM98mOFLyDvOlryR6uIOEkwxlCXnZikZN0q-IqfcKrkQWvLXL-oT8qaUe8aYto05JieSadXWzymZV2NGoNeAQ0x-ijnRn_AwR4RCrwAxhh7zAPRLzGWXph5KLNSnDa0lXcUNYB77veEWfSrVNQHS1YScxkRXoY9_cvEh9L5adqFKxzys4S056vy2wPnje0Z-XX29vfy2uPlx_f3y880iKGunBYCQ3BrpvQYfmBGN8tZ2Zh20FNxzYYNpGA9WaWEEVzxoZTfMQiVC12l5Rj4dvOO8HmATIE3ot27EOHjcueyj-7eTYu_u8m-nFVOiMVXw8VGA-WGGMrkhlgDbrU-Q5-IEb61sW215RT_8h97nGVM9r1K2bQ2zzX4jeaAC5lIQuudlOHP7WN1TrK7G6g6x1qn3L-94nnnKUf4F3KOjYA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Plante, Samuel</creator><creator>Labbé, Simon</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4947-523X</orcidid></search><sort><creationdate>20190301</creationdate><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><author>Plante, Samuel ; Labbé, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Biosynthesis</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Dormancy</topic><topic>Enzymes</topic><topic>Ferrichrome - metabolism</topic><topic>Genetics</topic><topic>Germination</topic><topic>Glucose</topic><topic>Hatches</topic><topic>Investigations</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron deficiency</topic><topic>Localization</topic><topic>Microscopy</topic><topic>Nutrient deficiency</topic><topic>Ornithine</topic><topic>Oxygenase</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Protein Domains</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Residues</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - physiology</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Spore germination</topic><topic>Spores</topic><topic>Spores, Fungal - genetics</topic><topic>Supplements</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plante, Samuel</creatorcontrib><creatorcontrib>Labbé, Simon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plante, Samuel</au><au>Labbé, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>211</volume><issue>3</issue><spage>893</spage><epage>911</epage><pages>893-911</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In
, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N
-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of
,
, and
transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions.
Δ
Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when
is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr
and Tyr
) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>30647069</pmid><doi>10.1534/genetics.118.301843</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4947-523X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2019-03, Vol.211 (3), p.893-911 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404258 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Amino acids Biosynthesis Cation Transport Proteins - chemistry Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cell cycle Cell division Chromosomes Dormancy Enzymes Ferrichrome - metabolism Genetics Germination Glucose Hatches Investigations Iron Iron - metabolism Iron deficiency Localization Microscopy Nutrient deficiency Ornithine Oxygenase Peptides Phenotypes Protein Domains Protein Transport Proteins Residues Schizosaccharomyces - genetics Schizosaccharomyces - physiology Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - chemistry Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Spore germination Spores Spores, Fungal - genetics Supplements Yeast |
title | Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spore%20Germination%20Requires%20Ferrichrome%20Biosynthesis%20and%20the%20Siderophore%20Transporter%20Str1%20in%20Schizosaccharomyces%20pombe&rft.jtitle=Genetics%20(Austin)&rft.au=Plante,%20Samuel&rft.date=2019-03-01&rft.volume=211&rft.issue=3&rft.spage=893&rft.epage=911&rft.pages=893-911&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1534/genetics.118.301843&rft_dat=%3Cproquest_pubme%3E2179377691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197780956&rft_id=info:pmid/30647069&rfr_iscdi=true |