Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe

Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of ger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2019-03, Vol.211 (3), p.893-911
Hauptverfasser: Plante, Samuel, Labbé, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 911
container_issue 3
container_start_page 893
container_title Genetics (Austin)
container_volume 211
creator Plante, Samuel
Labbé, Simon
description Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N -oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of , , and transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. Δ Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr and Tyr ) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.
doi_str_mv 10.1534/genetics.118.301843
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179377691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4NY2lr7FwgS8MWXu-bXZpMXQYutQkHw6nPI5Wa7KbfJdrIrnH-9Oa4t1adMmM98mOFLyDvOlryR6uIOEkwxlCXnZikZN0q-IqfcKrkQWvLXL-oT8qaUe8aYto05JieSadXWzymZV2NGoNeAQ0x-ijnRn_AwR4RCrwAxhh7zAPRLzGWXph5KLNSnDa0lXcUNYB77veEWfSrVNQHS1YScxkRXoY9_cvEh9L5adqFKxzys4S056vy2wPnje0Z-XX29vfy2uPlx_f3y880iKGunBYCQ3BrpvQYfmBGN8tZ2Zh20FNxzYYNpGA9WaWEEVzxoZTfMQiVC12l5Rj4dvOO8HmATIE3ot27EOHjcueyj-7eTYu_u8m-nFVOiMVXw8VGA-WGGMrkhlgDbrU-Q5-IEb61sW215RT_8h97nGVM9r1K2bQ2zzX4jeaAC5lIQuudlOHP7WN1TrK7G6g6x1qn3L-94nnnKUf4F3KOjYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197780956</pqid></control><display><type>article</type><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Plante, Samuel ; Labbé, Simon</creator><creatorcontrib>Plante, Samuel ; Labbé, Simon</creatorcontrib><description>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N -oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of , , and transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. Δ Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr and Tyr ) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.118.301843</identifier><identifier>PMID: 30647069</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Amino acids ; Biosynthesis ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell cycle ; Cell division ; Chromosomes ; Dormancy ; Enzymes ; Ferrichrome - metabolism ; Genetics ; Germination ; Glucose ; Hatches ; Investigations ; Iron ; Iron - metabolism ; Iron deficiency ; Localization ; Microscopy ; Nutrient deficiency ; Ornithine ; Oxygenase ; Peptides ; Phenotypes ; Protein Domains ; Protein Transport ; Proteins ; Residues ; Schizosaccharomyces - genetics ; Schizosaccharomyces - physiology ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - chemistry ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Spore germination ; Spores ; Spores, Fungal - genetics ; Supplements ; Yeast</subject><ispartof>Genetics (Austin), 2019-03, Vol.211 (3), p.893-911</ispartof><rights>Copyright © 2019 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Mar 2019</rights><rights>Copyright © 2019 by the Genetics Society of America 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</citedby><cites>FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</cites><orcidid>0000-0002-4947-523X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30647069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plante, Samuel</creatorcontrib><creatorcontrib>Labbé, Simon</creatorcontrib><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N -oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of , , and transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. Δ Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr and Tyr ) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</description><subject>Amino acids</subject><subject>Biosynthesis</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Dormancy</subject><subject>Enzymes</subject><subject>Ferrichrome - metabolism</subject><subject>Genetics</subject><subject>Germination</subject><subject>Glucose</subject><subject>Hatches</subject><subject>Investigations</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron deficiency</subject><subject>Localization</subject><subject>Microscopy</subject><subject>Nutrient deficiency</subject><subject>Ornithine</subject><subject>Oxygenase</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Protein Domains</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Residues</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - physiology</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Spore germination</subject><subject>Spores</subject><subject>Spores, Fungal - genetics</subject><subject>Supplements</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd9rFDEQx4NY2lr7FwgS8MWXu-bXZpMXQYutQkHw6nPI5Wa7KbfJdrIrnH-9Oa4t1adMmM98mOFLyDvOlryR6uIOEkwxlCXnZikZN0q-IqfcKrkQWvLXL-oT8qaUe8aYto05JieSadXWzymZV2NGoNeAQ0x-ijnRn_AwR4RCrwAxhh7zAPRLzGWXph5KLNSnDa0lXcUNYB77veEWfSrVNQHS1YScxkRXoY9_cvEh9L5adqFKxzys4S056vy2wPnje0Z-XX29vfy2uPlx_f3y880iKGunBYCQ3BrpvQYfmBGN8tZ2Zh20FNxzYYNpGA9WaWEEVzxoZTfMQiVC12l5Rj4dvOO8HmATIE3ot27EOHjcueyj-7eTYu_u8m-nFVOiMVXw8VGA-WGGMrkhlgDbrU-Q5-IEb61sW215RT_8h97nGVM9r1K2bQ2zzX4jeaAC5lIQuudlOHP7WN1TrK7G6g6x1qn3L-94nnnKUf4F3KOjYA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Plante, Samuel</creator><creator>Labbé, Simon</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4947-523X</orcidid></search><sort><creationdate>20190301</creationdate><title>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</title><author>Plante, Samuel ; Labbé, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ee231983aa6eac08254a99f8bc6321a129c8501c946282141c649d09e8bccff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Biosynthesis</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Dormancy</topic><topic>Enzymes</topic><topic>Ferrichrome - metabolism</topic><topic>Genetics</topic><topic>Germination</topic><topic>Glucose</topic><topic>Hatches</topic><topic>Investigations</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron deficiency</topic><topic>Localization</topic><topic>Microscopy</topic><topic>Nutrient deficiency</topic><topic>Ornithine</topic><topic>Oxygenase</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Protein Domains</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Residues</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - physiology</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Spore germination</topic><topic>Spores</topic><topic>Spores, Fungal - genetics</topic><topic>Supplements</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plante, Samuel</creatorcontrib><creatorcontrib>Labbé, Simon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plante, Samuel</au><au>Labbé, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>211</volume><issue>3</issue><spage>893</spage><epage>911</epage><pages>893-911</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In , one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N -oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of , , and transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. Δ Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr and Tyr ) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>30647069</pmid><doi>10.1534/genetics.118.301843</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4947-523X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2019-03, Vol.211 (3), p.893-911
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404258
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Amino acids
Biosynthesis
Cation Transport Proteins - chemistry
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell cycle
Cell division
Chromosomes
Dormancy
Enzymes
Ferrichrome - metabolism
Genetics
Germination
Glucose
Hatches
Investigations
Iron
Iron - metabolism
Iron deficiency
Localization
Microscopy
Nutrient deficiency
Ornithine
Oxygenase
Peptides
Phenotypes
Protein Domains
Protein Transport
Proteins
Residues
Schizosaccharomyces - genetics
Schizosaccharomyces - physiology
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - chemistry
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Spore germination
Spores
Spores, Fungal - genetics
Supplements
Yeast
title Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spore%20Germination%20Requires%20Ferrichrome%20Biosynthesis%20and%20the%20Siderophore%20Transporter%20Str1%20in%20Schizosaccharomyces%20pombe&rft.jtitle=Genetics%20(Austin)&rft.au=Plante,%20Samuel&rft.date=2019-03-01&rft.volume=211&rft.issue=3&rft.spage=893&rft.epage=911&rft.pages=893-911&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1534/genetics.118.301843&rft_dat=%3Cproquest_pubme%3E2179377691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197780956&rft_id=info:pmid/30647069&rfr_iscdi=true