Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties

In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2018-10, Vol.10 (10), p.1168
Hauptverfasser: Liu, Xuehua, Yang, Rue, Xu, Mincong, Ma, Chunhui, Li, Wei, Yin, Yu, Huang, Qiongtao, Wu, Yiqiang, Li, Jian, Liu, Shouxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1168
container_title Polymers
container_volume 10
creator Liu, Xuehua
Yang, Rue
Xu, Mincong
Ma, Chunhui
Li, Wei
Yin, Yu
Huang, Qiongtao
Wu, Yiqiang
Li, Jian
Liu, Shouxin
description In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker , '-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.
doi_str_mv 10.3390/polym10101168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206227617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMojqhLtxJw46aaV9PpRhgGdYRBBXUd0vTWyZA2Y9Iq_fdGfKAmi9ybfBzOzUHoiJIzzktyvvFubClJm8rpFtpjpOCZ4JJs_6on6DDGNUlL5FLSYhdNOCklJSXfQ24x1sH3Kwitdvhh7FIZbcS-wXNwbnA-Ar7VnTdhjL122XXQTQ91NksXzho8M7bGMwj-GVzEb7Zf4YdhA0FX0YcKuh7fB5_63kI8QDuNdhEOv8599HR1-ThfZMu765v5bJkZQfM-02WhKxBFzVkhBNWGQ54n41XBakobA4RPdWGmtCa0qUptZFWCmZJcAGs0afg-uvjU3QxVC7VJLoJ2ahNsq8OovLbq70tnV-rZvyopiCCSJoHTL4HgXwaIvWptNOk_dAd-iIoxIhkrkqeEnvxD134IXRpPMcqklJwxnqjskzLBxxig-TFDifqIUv2JMvHHvyf4ob-D4--vaJ0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126663223</pqid></control><display><type>article</type><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</creator><creatorcontrib>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</creatorcontrib><description>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker , '-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym10101168</identifier><identifier>PMID: 30961093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acrylamide ; Acrylic acid ; Adsorption ; Aerogels ; Cellulose ; Chemical industry ; Copolymerization ; Crosslinking ; Free radicals ; Graft copolymers ; Hydrogels ; Hydrothermal treatment ; Methods ; Methylene bisacrylamide ; Morphology ; Nanocrystals ; Polymerization ; Polysaccharides ; Regeneration ; Swelling ratio</subject><ispartof>Polymers, 2018-10, Vol.10 (10), p.1168</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</citedby><cites>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</cites><orcidid>0000-0002-3008-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30961093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuehua</creatorcontrib><creatorcontrib>Yang, Rue</creatorcontrib><creatorcontrib>Xu, Mincong</creatorcontrib><creatorcontrib>Ma, Chunhui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yin, Yu</creatorcontrib><creatorcontrib>Huang, Qiongtao</creatorcontrib><creatorcontrib>Wu, Yiqiang</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Shouxin</creatorcontrib><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker , '-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</description><subject>Acrylamide</subject><subject>Acrylic acid</subject><subject>Adsorption</subject><subject>Aerogels</subject><subject>Cellulose</subject><subject>Chemical industry</subject><subject>Copolymerization</subject><subject>Crosslinking</subject><subject>Free radicals</subject><subject>Graft copolymers</subject><subject>Hydrogels</subject><subject>Hydrothermal treatment</subject><subject>Methods</subject><subject>Methylene bisacrylamide</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Polymerization</subject><subject>Polysaccharides</subject><subject>Regeneration</subject><subject>Swelling ratio</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxDAUhYMojqhLtxJw46aaV9PpRhgGdYRBBXUd0vTWyZA2Y9Iq_fdGfKAmi9ybfBzOzUHoiJIzzktyvvFubClJm8rpFtpjpOCZ4JJs_6on6DDGNUlL5FLSYhdNOCklJSXfQ24x1sH3Kwitdvhh7FIZbcS-wXNwbnA-Ar7VnTdhjL122XXQTQ91NksXzho8M7bGMwj-GVzEb7Zf4YdhA0FX0YcKuh7fB5_63kI8QDuNdhEOv8599HR1-ThfZMu765v5bJkZQfM-02WhKxBFzVkhBNWGQ54n41XBakobA4RPdWGmtCa0qUptZFWCmZJcAGs0afg-uvjU3QxVC7VJLoJ2ahNsq8OovLbq70tnV-rZvyopiCCSJoHTL4HgXwaIvWptNOk_dAd-iIoxIhkrkqeEnvxD134IXRpPMcqklJwxnqjskzLBxxig-TFDifqIUv2JMvHHvyf4ob-D4--vaJ0w</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Liu, Xuehua</creator><creator>Yang, Rue</creator><creator>Xu, Mincong</creator><creator>Ma, Chunhui</creator><creator>Li, Wei</creator><creator>Yin, Yu</creator><creator>Huang, Qiongtao</creator><creator>Wu, Yiqiang</creator><creator>Li, Jian</creator><creator>Liu, Shouxin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3008-9865</orcidid></search><sort><creationdate>20181019</creationdate><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><author>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylamide</topic><topic>Acrylic acid</topic><topic>Adsorption</topic><topic>Aerogels</topic><topic>Cellulose</topic><topic>Chemical industry</topic><topic>Copolymerization</topic><topic>Crosslinking</topic><topic>Free radicals</topic><topic>Graft copolymers</topic><topic>Hydrogels</topic><topic>Hydrothermal treatment</topic><topic>Methods</topic><topic>Methylene bisacrylamide</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Polymerization</topic><topic>Polysaccharides</topic><topic>Regeneration</topic><topic>Swelling ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuehua</creatorcontrib><creatorcontrib>Yang, Rue</creatorcontrib><creatorcontrib>Xu, Mincong</creatorcontrib><creatorcontrib>Ma, Chunhui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yin, Yu</creatorcontrib><creatorcontrib>Huang, Qiongtao</creatorcontrib><creatorcontrib>Wu, Yiqiang</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Shouxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuehua</au><au>Yang, Rue</au><au>Xu, Mincong</au><au>Ma, Chunhui</au><au>Li, Wei</au><au>Yin, Yu</au><au>Huang, Qiongtao</au><au>Wu, Yiqiang</au><au>Li, Jian</au><au>Liu, Shouxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>10</volume><issue>10</issue><spage>1168</spage><pages>1168-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker , '-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30961093</pmid><doi>10.3390/polym10101168</doi><orcidid>https://orcid.org/0000-0002-3008-9865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2018-10, Vol.10 (10), p.1168
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404061
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Acrylamide
Acrylic acid
Adsorption
Aerogels
Cellulose
Chemical industry
Copolymerization
Crosslinking
Free radicals
Graft copolymers
Hydrogels
Hydrothermal treatment
Methods
Methylene bisacrylamide
Morphology
Nanocrystals
Polymerization
Polysaccharides
Regeneration
Swelling ratio
title Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Synthesis%20of%20Cellulose%20Nanocrystal-Grafted-Acrylic%20Acid%20Aerogels%20with%20Superabsorbent%20Properties&rft.jtitle=Polymers&rft.au=Liu,%20Xuehua&rft.date=2018-10-19&rft.volume=10&rft.issue=10&rft.spage=1168&rft.pages=1168-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym10101168&rft_dat=%3Cproquest_pubme%3E2206227617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126663223&rft_id=info:pmid/30961093&rfr_iscdi=true