Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties
In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acry...
Gespeichert in:
Veröffentlicht in: | Polymers 2018-10, Vol.10 (10), p.1168 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1168 |
container_title | Polymers |
container_volume | 10 |
creator | Liu, Xuehua Yang, Rue Xu, Mincong Ma, Chunhui Li, Wei Yin, Yu Huang, Qiongtao Wu, Yiqiang Li, Jian Liu, Shouxin |
description | In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker
,
'-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation. |
doi_str_mv | 10.3390/polym10101168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206227617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMojqhLtxJw46aaV9PpRhgGdYRBBXUd0vTWyZA2Y9Iq_fdGfKAmi9ybfBzOzUHoiJIzzktyvvFubClJm8rpFtpjpOCZ4JJs_6on6DDGNUlL5FLSYhdNOCklJSXfQ24x1sH3Kwitdvhh7FIZbcS-wXNwbnA-Ar7VnTdhjL122XXQTQ91NksXzho8M7bGMwj-GVzEb7Zf4YdhA0FX0YcKuh7fB5_63kI8QDuNdhEOv8599HR1-ThfZMu765v5bJkZQfM-02WhKxBFzVkhBNWGQ54n41XBakobA4RPdWGmtCa0qUptZFWCmZJcAGs0afg-uvjU3QxVC7VJLoJ2ahNsq8OovLbq70tnV-rZvyopiCCSJoHTL4HgXwaIvWptNOk_dAd-iIoxIhkrkqeEnvxD134IXRpPMcqklJwxnqjskzLBxxig-TFDifqIUv2JMvHHvyf4ob-D4--vaJ0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126663223</pqid></control><display><type>article</type><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</creator><creatorcontrib>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</creatorcontrib><description>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker
,
'-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym10101168</identifier><identifier>PMID: 30961093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acrylamide ; Acrylic acid ; Adsorption ; Aerogels ; Cellulose ; Chemical industry ; Copolymerization ; Crosslinking ; Free radicals ; Graft copolymers ; Hydrogels ; Hydrothermal treatment ; Methods ; Methylene bisacrylamide ; Morphology ; Nanocrystals ; Polymerization ; Polysaccharides ; Regeneration ; Swelling ratio</subject><ispartof>Polymers, 2018-10, Vol.10 (10), p.1168</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</citedby><cites>FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</cites><orcidid>0000-0002-3008-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30961093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuehua</creatorcontrib><creatorcontrib>Yang, Rue</creatorcontrib><creatorcontrib>Xu, Mincong</creatorcontrib><creatorcontrib>Ma, Chunhui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yin, Yu</creatorcontrib><creatorcontrib>Huang, Qiongtao</creatorcontrib><creatorcontrib>Wu, Yiqiang</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Shouxin</creatorcontrib><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker
,
'-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</description><subject>Acrylamide</subject><subject>Acrylic acid</subject><subject>Adsorption</subject><subject>Aerogels</subject><subject>Cellulose</subject><subject>Chemical industry</subject><subject>Copolymerization</subject><subject>Crosslinking</subject><subject>Free radicals</subject><subject>Graft copolymers</subject><subject>Hydrogels</subject><subject>Hydrothermal treatment</subject><subject>Methods</subject><subject>Methylene bisacrylamide</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Polymerization</subject><subject>Polysaccharides</subject><subject>Regeneration</subject><subject>Swelling ratio</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxDAUhYMojqhLtxJw46aaV9PpRhgGdYRBBXUd0vTWyZA2Y9Iq_fdGfKAmi9ybfBzOzUHoiJIzzktyvvFubClJm8rpFtpjpOCZ4JJs_6on6DDGNUlL5FLSYhdNOCklJSXfQ24x1sH3Kwitdvhh7FIZbcS-wXNwbnA-Ar7VnTdhjL122XXQTQ91NksXzho8M7bGMwj-GVzEb7Zf4YdhA0FX0YcKuh7fB5_63kI8QDuNdhEOv8599HR1-ThfZMu765v5bJkZQfM-02WhKxBFzVkhBNWGQ54n41XBakobA4RPdWGmtCa0qUptZFWCmZJcAGs0afg-uvjU3QxVC7VJLoJ2ahNsq8OovLbq70tnV-rZvyopiCCSJoHTL4HgXwaIvWptNOk_dAd-iIoxIhkrkqeEnvxD134IXRpPMcqklJwxnqjskzLBxxig-TFDifqIUv2JMvHHvyf4ob-D4--vaJ0w</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Liu, Xuehua</creator><creator>Yang, Rue</creator><creator>Xu, Mincong</creator><creator>Ma, Chunhui</creator><creator>Li, Wei</creator><creator>Yin, Yu</creator><creator>Huang, Qiongtao</creator><creator>Wu, Yiqiang</creator><creator>Li, Jian</creator><creator>Liu, Shouxin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3008-9865</orcidid></search><sort><creationdate>20181019</creationdate><title>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</title><author>Liu, Xuehua ; Yang, Rue ; Xu, Mincong ; Ma, Chunhui ; Li, Wei ; Yin, Yu ; Huang, Qiongtao ; Wu, Yiqiang ; Li, Jian ; Liu, Shouxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a97abe47d327441ac3e55617b72d11fce038a7c81d01fb9ac6b9ec8054e2fa0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylamide</topic><topic>Acrylic acid</topic><topic>Adsorption</topic><topic>Aerogels</topic><topic>Cellulose</topic><topic>Chemical industry</topic><topic>Copolymerization</topic><topic>Crosslinking</topic><topic>Free radicals</topic><topic>Graft copolymers</topic><topic>Hydrogels</topic><topic>Hydrothermal treatment</topic><topic>Methods</topic><topic>Methylene bisacrylamide</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Polymerization</topic><topic>Polysaccharides</topic><topic>Regeneration</topic><topic>Swelling ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuehua</creatorcontrib><creatorcontrib>Yang, Rue</creatorcontrib><creatorcontrib>Xu, Mincong</creatorcontrib><creatorcontrib>Ma, Chunhui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yin, Yu</creatorcontrib><creatorcontrib>Huang, Qiongtao</creatorcontrib><creatorcontrib>Wu, Yiqiang</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Shouxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuehua</au><au>Yang, Rue</au><au>Xu, Mincong</au><au>Ma, Chunhui</au><au>Li, Wei</au><au>Yin, Yu</au><au>Huang, Qiongtao</au><au>Wu, Yiqiang</au><au>Li, Jian</au><au>Liu, Shouxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>10</volume><issue>10</issue><spage>1168</spage><pages>1168-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphology of the obtained CNC-g-AA aerogels were affected by the hydrothermal treatment time, volume of added AA (acrylic acid), and the mass fraction of the CNCs. The formation mechanism of the aerogels involved free radical graft copolymerization of AA and CNCs with the cross-linker
,
'-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AA aerogels systems. Moreover, the CNC-g-AA aerogels exhibited an excellent methyl blue (MB) adsorption capacity and the ability to undergo rapid desorption/regeneration. The maximum adsorption capacity of the CNC-g-AA aerogels for MB was greater than 400 mg/g. Excellent regeneration performance further indicates the promise of our CNC-g-AA aerogels as an adsorbent for applications in environmental remediation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30961093</pmid><doi>10.3390/polym10101168</doi><orcidid>https://orcid.org/0000-0002-3008-9865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2018-10, Vol.10 (10), p.1168 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6404061 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Acrylamide Acrylic acid Adsorption Aerogels Cellulose Chemical industry Copolymerization Crosslinking Free radicals Graft copolymers Hydrogels Hydrothermal treatment Methods Methylene bisacrylamide Morphology Nanocrystals Polymerization Polysaccharides Regeneration Swelling ratio |
title | Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Synthesis%20of%20Cellulose%20Nanocrystal-Grafted-Acrylic%20Acid%20Aerogels%20with%20Superabsorbent%20Properties&rft.jtitle=Polymers&rft.au=Liu,%20Xuehua&rft.date=2018-10-19&rft.volume=10&rft.issue=10&rft.spage=1168&rft.pages=1168-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym10101168&rft_dat=%3Cproquest_pubme%3E2206227617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126663223&rft_id=info:pmid/30961093&rfr_iscdi=true |