Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate
Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica su...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-03, Vol.9 (1), p.3629-3629, Article 3629 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3629 |
---|---|
container_issue | 1 |
container_start_page | 3629 |
container_title | Scientific reports |
container_volume | 9 |
creator | Cha, Song-Hyun Kang, Se-Hyeon Lee, You Jeong Kim, Jae-Hyun Ahn, Eun-Young Park, Youmie Cho, Seonho |
description | Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica substrate provide sufficient energy to pass the diffusion barrier of the gold atoms, which eventually leads to cold welding. A dielectrophoresis force exerted on polarizable particles in a non-uniform electric field contributes to the directed growth of the cold welding that occurs by adjusting the lattice structures of AuNPs. Depending on the concentration of the AuNP suspension, the frequency of the electric field, and the geometry of electrodes, various morphologies of nanoribbons are fabricated. It turns out that the welded region is nearly perfect to provide the same crystal orientation and strength as the rest of the nanostructures, which can be extensively utilized in the fabrication of various nanostructures. |
doi_str_mv | 10.1038/s41598-019-40248-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6403349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188587624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6851fe2adf246463542c51519e562487bf9a5f82a4879071e4451e608c91649e3</originalsourceid><addsrcrecordid>eNp9UctO3TAQtVArQJQfYIEsddNNqO3YufamUoV4SUhsYG05zuRilNgXT9KKv8fhAqVd1At7rDmPGR1Cjjg74azW31FyZXTFuKkkE1JXeofsCyZVJWohPn2o98gh4gMrRwkjudklezXTUjRC7JPx3LU5eDeFFGnqaXQx5dC2KSJtn2gXYAA_5bS5TxkwIHVY7gk66tPQ0d8wdCGuF-Z6-S_0jctT8AMgLZJj0aY4tzhlN8EX8rl3A8Lh63tA7s7Pbk8vq-ubi6vTn9eVlys5VY1WvAfhul7IRja1ksIrrrgB1ZRVV21vnOq1cKU2bMVBSsWhYdob3kgD9QH5sdXdzO0InYdY7Ae7yWF0-ckmF-zfnRju7Tr9so1kdS1NEfj2KpDT4ww42TGgh2FwEdKMVnCtzeItCvTrP9CHNOdY1ntBKb0qMxeU2KJ8TogZ-vdhOLNLoHYbqC2B2pdArS6k449rvFPe4iuAegvA0opryH-8_yP7DMi1rK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188587624</pqid></control><display><type>article</type><title>Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Cha, Song-Hyun ; Kang, Se-Hyeon ; Lee, You Jeong ; Kim, Jae-Hyun ; Ahn, Eun-Young ; Park, Youmie ; Cho, Seonho</creator><creatorcontrib>Cha, Song-Hyun ; Kang, Se-Hyeon ; Lee, You Jeong ; Kim, Jae-Hyun ; Ahn, Eun-Young ; Park, Youmie ; Cho, Seonho</creatorcontrib><description>Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica substrate provide sufficient energy to pass the diffusion barrier of the gold atoms, which eventually leads to cold welding. A dielectrophoresis force exerted on polarizable particles in a non-uniform electric field contributes to the directed growth of the cold welding that occurs by adjusting the lattice structures of AuNPs. Depending on the concentration of the AuNP suspension, the frequency of the electric field, and the geometry of electrodes, various morphologies of nanoribbons are fabricated. It turns out that the welded region is nearly perfect to provide the same crystal orientation and strength as the rest of the nanostructures, which can be extensively utilized in the fabrication of various nanostructures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-40248-8</identifier><identifier>PMID: 30842622</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 639/925/357/354 ; Electric fields ; Fabrication ; Gold ; Humanities and Social Sciences ; Kinetic energy ; multidisciplinary ; Nanoparticles ; Science ; Science (multidisciplinary) ; Welding</subject><ispartof>Scientific reports, 2019-03, Vol.9 (1), p.3629-3629, Article 3629</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6851fe2adf246463542c51519e562487bf9a5f82a4879071e4451e608c91649e3</citedby><cites>FETCH-LOGICAL-c474t-6851fe2adf246463542c51519e562487bf9a5f82a4879071e4451e608c91649e3</cites><orcidid>0000-0002-5797-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30842622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, Song-Hyun</creatorcontrib><creatorcontrib>Kang, Se-Hyeon</creatorcontrib><creatorcontrib>Lee, You Jeong</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Ahn, Eun-Young</creatorcontrib><creatorcontrib>Park, Youmie</creatorcontrib><creatorcontrib>Cho, Seonho</creatorcontrib><title>Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica substrate provide sufficient energy to pass the diffusion barrier of the gold atoms, which eventually leads to cold welding. A dielectrophoresis force exerted on polarizable particles in a non-uniform electric field contributes to the directed growth of the cold welding that occurs by adjusting the lattice structures of AuNPs. Depending on the concentration of the AuNP suspension, the frequency of the electric field, and the geometry of electrodes, various morphologies of nanoribbons are fabricated. It turns out that the welded region is nearly perfect to provide the same crystal orientation and strength as the rest of the nanostructures, which can be extensively utilized in the fabrication of various nanostructures.</description><subject>639/705/1042</subject><subject>639/925/357/354</subject><subject>Electric fields</subject><subject>Fabrication</subject><subject>Gold</subject><subject>Humanities and Social Sciences</subject><subject>Kinetic energy</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Welding</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UctO3TAQtVArQJQfYIEsddNNqO3YufamUoV4SUhsYG05zuRilNgXT9KKv8fhAqVd1At7rDmPGR1Cjjg74azW31FyZXTFuKkkE1JXeofsCyZVJWohPn2o98gh4gMrRwkjudklezXTUjRC7JPx3LU5eDeFFGnqaXQx5dC2KSJtn2gXYAA_5bS5TxkwIHVY7gk66tPQ0d8wdCGuF-Z6-S_0jctT8AMgLZJj0aY4tzhlN8EX8rl3A8Lh63tA7s7Pbk8vq-ubi6vTn9eVlys5VY1WvAfhul7IRja1ksIrrrgB1ZRVV21vnOq1cKU2bMVBSsWhYdob3kgD9QH5sdXdzO0InYdY7Ae7yWF0-ckmF-zfnRju7Tr9so1kdS1NEfj2KpDT4ww42TGgh2FwEdKMVnCtzeItCvTrP9CHNOdY1ntBKb0qMxeU2KJ8TogZ-vdhOLNLoHYbqC2B2pdArS6k449rvFPe4iuAegvA0opryH-8_yP7DMi1rK4</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Cha, Song-Hyun</creator><creator>Kang, Se-Hyeon</creator><creator>Lee, You Jeong</creator><creator>Kim, Jae-Hyun</creator><creator>Ahn, Eun-Young</creator><creator>Park, Youmie</creator><creator>Cho, Seonho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5797-4530</orcidid></search><sort><creationdate>20190306</creationdate><title>Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate</title><author>Cha, Song-Hyun ; Kang, Se-Hyeon ; Lee, You Jeong ; Kim, Jae-Hyun ; Ahn, Eun-Young ; Park, Youmie ; Cho, Seonho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6851fe2adf246463542c51519e562487bf9a5f82a4879071e4451e608c91649e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/1042</topic><topic>639/925/357/354</topic><topic>Electric fields</topic><topic>Fabrication</topic><topic>Gold</topic><topic>Humanities and Social Sciences</topic><topic>Kinetic energy</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Song-Hyun</creatorcontrib><creatorcontrib>Kang, Se-Hyeon</creatorcontrib><creatorcontrib>Lee, You Jeong</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Ahn, Eun-Young</creatorcontrib><creatorcontrib>Park, Youmie</creatorcontrib><creatorcontrib>Cho, Seonho</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Song-Hyun</au><au>Kang, Se-Hyeon</au><au>Lee, You Jeong</au><au>Kim, Jae-Hyun</au><au>Ahn, Eun-Young</au><au>Park, Youmie</au><au>Cho, Seonho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-03-06</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>3629</spage><epage>3629</epage><pages>3629-3629</pages><artnum>3629</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica substrate provide sufficient energy to pass the diffusion barrier of the gold atoms, which eventually leads to cold welding. A dielectrophoresis force exerted on polarizable particles in a non-uniform electric field contributes to the directed growth of the cold welding that occurs by adjusting the lattice structures of AuNPs. Depending on the concentration of the AuNP suspension, the frequency of the electric field, and the geometry of electrodes, various morphologies of nanoribbons are fabricated. It turns out that the welded region is nearly perfect to provide the same crystal orientation and strength as the rest of the nanostructures, which can be extensively utilized in the fabrication of various nanostructures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30842622</pmid><doi>10.1038/s41598-019-40248-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5797-4530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-03, Vol.9 (1), p.3629-3629, Article 3629 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6403349 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/705/1042 639/925/357/354 Electric fields Fabrication Gold Humanities and Social Sciences Kinetic energy multidisciplinary Nanoparticles Science Science (multidisciplinary) Welding |
title | Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20nanoribbons%20by%20dielectrophoresis%20assisted%20cold%20welding%20of%20gold%20nanoparticles%20on%20mica%20substrate&rft.jtitle=Scientific%20reports&rft.au=Cha,%20Song-Hyun&rft.date=2019-03-06&rft.volume=9&rft.issue=1&rft.spage=3629&rft.epage=3629&rft.pages=3629-3629&rft.artnum=3629&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-40248-8&rft_dat=%3Cproquest_pubme%3E2188587624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188587624&rft_id=info:pmid/30842622&rfr_iscdi=true |