Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space

Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tomography (Ann Arbor) 2019-03, Vol.5 (1), p.127-134
Hauptverfasser: McGarry, Sean D, Bukowy, John D, Iczkowski, Kenneth A, Unteriner, Jackson G, Duvnjak, Petar, Lowman, Allison K, Jacobsohn, Kenneth, Hohenwalter, Mark, Griffin, Michael O, Barrington, Alex W, Foss, Halle E, Keuter, Tucker, Hurrell, Sarah L, See, William A, Nevalainen, Marja T, Banerjee, Anjishnu, LaViolette, Peter S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 127
container_title Tomography (Ann Arbor)
container_volume 5
creator McGarry, Sean D
Bukowy, John D
Iczkowski, Kenneth A
Unteriner, Jackson G
Duvnjak, Petar
Lowman, Allison K
Jacobsohn, Kenneth
Hohenwalter, Mark
Griffin, Michael O
Barrington, Alex W
Foss, Halle E
Keuter, Tucker
Hurrell, Sarah L
See, William A
Nevalainen, Marja T
Banerjee, Anjishnu
LaViolette, Peter S
description Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique image signatures associated with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board-approved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Postsurgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC 50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated probability values were applied to a naive test set. The resulting Gleason probability maps were stable regardless of training cohort, functioned independent of prostate zone, and outperformed conventional clinical imaging (area under the curve [AUC] = 0.79). Extensive overlap was seen in the most common image signatures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present similarly on conventional imaging.
doi_str_mv 10.18383/j.tom.2018.00033
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6403022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190108313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bac2897d1299f03036d771fa9d99b35803965ea3fa3288220aace5e08dc26c313</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhYMoVqo_wBfJoy-tSabbTXwQpHgpVBQv4JNhNputqbubdbMV_PemrYpCYAJz5pxkPkIOORtyCRJOFsPOV0PBuBwyxgC2yJ6AVA04qOftP_ceOQhhESWCiXjSXdIDJpPRKGF75OWqtBh8Te9an2HmStd90htswik9p_eYO185E-ij9yUtfLtqNa6er-Shw87SCdbGtnTm3mzpXr3Pqavpzf2UPjRo7D7ZKbAM9uC79snT5cXj5Howu72aTs5nAwNKdYMMjZAqzblQqmDAYJynKS9Q5UplkEgGapxYhAJBSBl_gdE7sUzmRowNcOiTs41vs8wqmxtbdy2Wumldhe2n9uj0_07tXvXcf-jxKMYJEQ2Ovw1a_760odOVC8aWJdbWL4MWXDHOZIyKUr6RmriD0NriN4YzvUajFzqi0Ss0eo0mzhz9fd_vxA8I-AIQ_Iro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190108313</pqid></control><display><type>article</type><title>Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>McGarry, Sean D ; Bukowy, John D ; Iczkowski, Kenneth A ; Unteriner, Jackson G ; Duvnjak, Petar ; Lowman, Allison K ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Griffin, Michael O ; Barrington, Alex W ; Foss, Halle E ; Keuter, Tucker ; Hurrell, Sarah L ; See, William A ; Nevalainen, Marja T ; Banerjee, Anjishnu ; LaViolette, Peter S</creator><creatorcontrib>McGarry, Sean D ; Bukowy, John D ; Iczkowski, Kenneth A ; Unteriner, Jackson G ; Duvnjak, Petar ; Lowman, Allison K ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Griffin, Michael O ; Barrington, Alex W ; Foss, Halle E ; Keuter, Tucker ; Hurrell, Sarah L ; See, William A ; Nevalainen, Marja T ; Banerjee, Anjishnu ; LaViolette, Peter S</creatorcontrib><description>Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique image signatures associated with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board-approved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Postsurgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC 50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated probability values were applied to a naive test set. The resulting Gleason probability maps were stable regardless of training cohort, functioned independent of prostate zone, and outperformed conventional clinical imaging (area under the curve [AUC] = 0.79). Extensive overlap was seen in the most common image signatures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present similarly on conventional imaging.</description><identifier>ISSN: 2379-139X</identifier><identifier>ISSN: 2379-1381</identifier><identifier>EISSN: 2379-139X</identifier><identifier>DOI: 10.18383/j.tom.2018.00033</identifier><identifier>PMID: 30854450</identifier><language>eng</language><publisher>United States: Grapho Publications, LLC</publisher><subject>Adult ; Aged ; Early Detection of Cancer - methods ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Neoplasm Grading ; Prospective Studies ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - surgery ; Risk Assessment - methods ; ROC Curve</subject><ispartof>Tomography (Ann Arbor), 2019-03, Vol.5 (1), p.127-134</ispartof><rights>2019 The Authors. Published by Grapho Publications, LLC 2019 Grapho Publications, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-bac2897d1299f03036d771fa9d99b35803965ea3fa3288220aace5e08dc26c313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403022/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403022/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30854450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGarry, Sean D</creatorcontrib><creatorcontrib>Bukowy, John D</creatorcontrib><creatorcontrib>Iczkowski, Kenneth A</creatorcontrib><creatorcontrib>Unteriner, Jackson G</creatorcontrib><creatorcontrib>Duvnjak, Petar</creatorcontrib><creatorcontrib>Lowman, Allison K</creatorcontrib><creatorcontrib>Jacobsohn, Kenneth</creatorcontrib><creatorcontrib>Hohenwalter, Mark</creatorcontrib><creatorcontrib>Griffin, Michael O</creatorcontrib><creatorcontrib>Barrington, Alex W</creatorcontrib><creatorcontrib>Foss, Halle E</creatorcontrib><creatorcontrib>Keuter, Tucker</creatorcontrib><creatorcontrib>Hurrell, Sarah L</creatorcontrib><creatorcontrib>See, William A</creatorcontrib><creatorcontrib>Nevalainen, Marja T</creatorcontrib><creatorcontrib>Banerjee, Anjishnu</creatorcontrib><creatorcontrib>LaViolette, Peter S</creatorcontrib><title>Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space</title><title>Tomography (Ann Arbor)</title><addtitle>Tomography</addtitle><description>Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique image signatures associated with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board-approved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Postsurgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC 50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated probability values were applied to a naive test set. The resulting Gleason probability maps were stable regardless of training cohort, functioned independent of prostate zone, and outperformed conventional clinical imaging (area under the curve [AUC] = 0.79). Extensive overlap was seen in the most common image signatures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present similarly on conventional imaging.</description><subject>Adult</subject><subject>Aged</subject><subject>Early Detection of Cancer - methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neoplasm Grading</subject><subject>Prospective Studies</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Risk Assessment - methods</subject><subject>ROC Curve</subject><issn>2379-139X</issn><issn>2379-1381</issn><issn>2379-139X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtLAzEQhYMoVqo_wBfJoy-tSabbTXwQpHgpVBQv4JNhNputqbubdbMV_PemrYpCYAJz5pxkPkIOORtyCRJOFsPOV0PBuBwyxgC2yJ6AVA04qOftP_ceOQhhESWCiXjSXdIDJpPRKGF75OWqtBh8Te9an2HmStd90htswik9p_eYO185E-ij9yUtfLtqNa6er-Shw87SCdbGtnTm3mzpXr3Pqavpzf2UPjRo7D7ZKbAM9uC79snT5cXj5Howu72aTs5nAwNKdYMMjZAqzblQqmDAYJynKS9Q5UplkEgGapxYhAJBSBl_gdE7sUzmRowNcOiTs41vs8wqmxtbdy2Wumldhe2n9uj0_07tXvXcf-jxKMYJEQ2Ovw1a_760odOVC8aWJdbWL4MWXDHOZIyKUr6RmriD0NriN4YzvUajFzqi0Ss0eo0mzhz9fd_vxA8I-AIQ_Iro</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>McGarry, Sean D</creator><creator>Bukowy, John D</creator><creator>Iczkowski, Kenneth A</creator><creator>Unteriner, Jackson G</creator><creator>Duvnjak, Petar</creator><creator>Lowman, Allison K</creator><creator>Jacobsohn, Kenneth</creator><creator>Hohenwalter, Mark</creator><creator>Griffin, Michael O</creator><creator>Barrington, Alex W</creator><creator>Foss, Halle E</creator><creator>Keuter, Tucker</creator><creator>Hurrell, Sarah L</creator><creator>See, William A</creator><creator>Nevalainen, Marja T</creator><creator>Banerjee, Anjishnu</creator><creator>LaViolette, Peter S</creator><general>Grapho Publications, LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201903</creationdate><title>Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space</title><author>McGarry, Sean D ; Bukowy, John D ; Iczkowski, Kenneth A ; Unteriner, Jackson G ; Duvnjak, Petar ; Lowman, Allison K ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Griffin, Michael O ; Barrington, Alex W ; Foss, Halle E ; Keuter, Tucker ; Hurrell, Sarah L ; See, William A ; Nevalainen, Marja T ; Banerjee, Anjishnu ; LaViolette, Peter S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bac2897d1299f03036d771fa9d99b35803965ea3fa3288220aace5e08dc26c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Early Detection of Cancer - methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neoplasm Grading</topic><topic>Prospective Studies</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Risk Assessment - methods</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGarry, Sean D</creatorcontrib><creatorcontrib>Bukowy, John D</creatorcontrib><creatorcontrib>Iczkowski, Kenneth A</creatorcontrib><creatorcontrib>Unteriner, Jackson G</creatorcontrib><creatorcontrib>Duvnjak, Petar</creatorcontrib><creatorcontrib>Lowman, Allison K</creatorcontrib><creatorcontrib>Jacobsohn, Kenneth</creatorcontrib><creatorcontrib>Hohenwalter, Mark</creatorcontrib><creatorcontrib>Griffin, Michael O</creatorcontrib><creatorcontrib>Barrington, Alex W</creatorcontrib><creatorcontrib>Foss, Halle E</creatorcontrib><creatorcontrib>Keuter, Tucker</creatorcontrib><creatorcontrib>Hurrell, Sarah L</creatorcontrib><creatorcontrib>See, William A</creatorcontrib><creatorcontrib>Nevalainen, Marja T</creatorcontrib><creatorcontrib>Banerjee, Anjishnu</creatorcontrib><creatorcontrib>LaViolette, Peter S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tomography (Ann Arbor)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGarry, Sean D</au><au>Bukowy, John D</au><au>Iczkowski, Kenneth A</au><au>Unteriner, Jackson G</au><au>Duvnjak, Petar</au><au>Lowman, Allison K</au><au>Jacobsohn, Kenneth</au><au>Hohenwalter, Mark</au><au>Griffin, Michael O</au><au>Barrington, Alex W</au><au>Foss, Halle E</au><au>Keuter, Tucker</au><au>Hurrell, Sarah L</au><au>See, William A</au><au>Nevalainen, Marja T</au><au>Banerjee, Anjishnu</au><au>LaViolette, Peter S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space</atitle><jtitle>Tomography (Ann Arbor)</jtitle><addtitle>Tomography</addtitle><date>2019-03</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>127</spage><epage>134</epage><pages>127-134</pages><issn>2379-139X</issn><issn>2379-1381</issn><eissn>2379-139X</eissn><abstract>Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique image signatures associated with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board-approved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Postsurgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC 50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated probability values were applied to a naive test set. The resulting Gleason probability maps were stable regardless of training cohort, functioned independent of prostate zone, and outperformed conventional clinical imaging (area under the curve [AUC] = 0.79). Extensive overlap was seen in the most common image signatures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present similarly on conventional imaging.</abstract><cop>United States</cop><pub>Grapho Publications, LLC</pub><pmid>30854450</pmid><doi>10.18383/j.tom.2018.00033</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-139X
ispartof Tomography (Ann Arbor), 2019-03, Vol.5 (1), p.127-134
issn 2379-139X
2379-1381
2379-139X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6403022
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Adult
Aged
Early Detection of Cancer - methods
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neoplasm Grading
Prospective Studies
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Prostatic Neoplasms - surgery
Risk Assessment - methods
ROC Curve
title Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gleason%20Probability%20Maps:%20A%20Radiomics%20Tool%20for%20Mapping%20Prostate%20Cancer%20Likelihood%20in%20MRI%20Space&rft.jtitle=Tomography%20(Ann%20Arbor)&rft.au=McGarry,%20Sean%20D&rft.date=2019-03&rft.volume=5&rft.issue=1&rft.spage=127&rft.epage=134&rft.pages=127-134&rft.issn=2379-139X&rft.eissn=2379-139X&rft_id=info:doi/10.18383/j.tom.2018.00033&rft_dat=%3Cproquest_pubme%3E2190108313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190108313&rft_id=info:pmid/30854450&rfr_iscdi=true