Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends

Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2018-12, Vol.10 (12), p.1371
Hauptverfasser: Arroyo, Jesse, Ryan, Cecily
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1371
container_title Polymers
container_volume 10
creator Arroyo, Jesse
Ryan, Cecily
description Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate- -hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 10 8 Ω as compared to 2.99 × 10 8 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.
doi_str_mv 10.3390/polym10121371
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206227641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-bc572f449589b35765de63c78904d12174bda082bc447eec76903c433becbd9d3</originalsourceid><addsrcrecordid>eNpdkc1L9DAQxoMoKurRqxS8eKnmq0njQdDFL1h1D-o1JOlUK9lkTdoX_O_f6qqoc5kZ5sfDPDwI7RJ8yJjCR4vo3-YEE0qYJCtok2LJSs4EXv0xb6CdnF_wWLwSgsh1tMGwEoQqsYnsdXAxLWIyfRdDEdtiYpIdp1sTYtt5DykX90OAXNyAezahc8YXJjTFuQfXp491BslFv1ToQjG7Ons8nk1PizMPocnbaK01PsPOZ99CDxfn95Orcnp3eT05nZaOk6ovraskbTlXVa0sq6SoGhDMyVph3owOJbeNwTW1jnMJ4KRQmDnOmAVnG9WwLXSy1F0Mdg6Ng9An4_UidXOT3nQ0nf59Cd2zfor_tOCYKI5HgYNPgRRfB8i9nnfZgfcmQByyphQLSqXgZET3_6AvcUhhtKdpVdOaV0zwkSqXlEsx5wTt9zME6_cA9a8AR37vp4Nv-isu9h90F5b6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582845364</pqid></control><display><type>article</type><title>Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Arroyo, Jesse ; Ryan, Cecily</creator><creatorcontrib>Arroyo, Jesse ; Ryan, Cecily</creatorcontrib><description>Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate- -hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 10 8 Ω as compared to 2.99 × 10 8 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym10121371</identifier><identifier>PMID: 30961296</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biodegradable materials ; Bioplastics ; Biopolymers ; Carbon black ; Conductivity ; Contact angle ; Dynamic mechanical analysis ; Electrical properties ; Electrical resistivity ; Fillers ; Graphene ; Impact strength ; Lignin ; Localization ; Mechanical properties ; Mixtures ; Morphology ; Nanocomposites ; Percolation ; Phase separation ; Polylactic acid ; Polymer blends ; Polymer matrix composites ; Reduction ; Rheology ; Spectrum analysis</subject><ispartof>Polymers, 2018-12, Vol.10 (12), p.1371</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-bc572f449589b35765de63c78904d12174bda082bc447eec76903c433becbd9d3</citedby><cites>FETCH-LOGICAL-c415t-bc572f449589b35765de63c78904d12174bda082bc447eec76903c433becbd9d3</cites><orcidid>0000-0001-8335-2287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401940/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401940/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30961296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arroyo, Jesse</creatorcontrib><creatorcontrib>Ryan, Cecily</creatorcontrib><title>Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate- -hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 10 8 Ω as compared to 2.99 × 10 8 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.</description><subject>Biodegradable materials</subject><subject>Bioplastics</subject><subject>Biopolymers</subject><subject>Carbon black</subject><subject>Conductivity</subject><subject>Contact angle</subject><subject>Dynamic mechanical analysis</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Impact strength</subject><subject>Lignin</subject><subject>Localization</subject><subject>Mechanical properties</subject><subject>Mixtures</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Percolation</subject><subject>Phase separation</subject><subject>Polylactic acid</subject><subject>Polymer blends</subject><subject>Polymer matrix composites</subject><subject>Reduction</subject><subject>Rheology</subject><subject>Spectrum analysis</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1L9DAQxoMoKurRqxS8eKnmq0njQdDFL1h1D-o1JOlUK9lkTdoX_O_f6qqoc5kZ5sfDPDwI7RJ8yJjCR4vo3-YEE0qYJCtok2LJSs4EXv0xb6CdnF_wWLwSgsh1tMGwEoQqsYnsdXAxLWIyfRdDEdtiYpIdp1sTYtt5DykX90OAXNyAezahc8YXJjTFuQfXp491BslFv1ToQjG7Ons8nk1PizMPocnbaK01PsPOZ99CDxfn95Orcnp3eT05nZaOk6ovraskbTlXVa0sq6SoGhDMyVph3owOJbeNwTW1jnMJ4KRQmDnOmAVnG9WwLXSy1F0Mdg6Ng9An4_UidXOT3nQ0nf59Cd2zfor_tOCYKI5HgYNPgRRfB8i9nnfZgfcmQByyphQLSqXgZET3_6AvcUhhtKdpVdOaV0zwkSqXlEsx5wTt9zME6_cA9a8AR37vp4Nv-isu9h90F5b6</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Arroyo, Jesse</creator><creator>Ryan, Cecily</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8335-2287</orcidid></search><sort><creationdate>20181211</creationdate><title>Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends</title><author>Arroyo, Jesse ; Ryan, Cecily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-bc572f449589b35765de63c78904d12174bda082bc447eec76903c433becbd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biodegradable materials</topic><topic>Bioplastics</topic><topic>Biopolymers</topic><topic>Carbon black</topic><topic>Conductivity</topic><topic>Contact angle</topic><topic>Dynamic mechanical analysis</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Impact strength</topic><topic>Lignin</topic><topic>Localization</topic><topic>Mechanical properties</topic><topic>Mixtures</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Percolation</topic><topic>Phase separation</topic><topic>Polylactic acid</topic><topic>Polymer blends</topic><topic>Polymer matrix composites</topic><topic>Reduction</topic><topic>Rheology</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo, Jesse</creatorcontrib><creatorcontrib>Ryan, Cecily</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo, Jesse</au><au>Ryan, Cecily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>1371</spage><pages>1371-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate- -hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 10 8 Ω as compared to 2.99 × 10 8 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30961296</pmid><doi>10.3390/polym10121371</doi><orcidid>https://orcid.org/0000-0001-8335-2287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2018-12, Vol.10 (12), p.1371
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401940
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biodegradable materials
Bioplastics
Biopolymers
Carbon black
Conductivity
Contact angle
Dynamic mechanical analysis
Electrical properties
Electrical resistivity
Fillers
Graphene
Impact strength
Lignin
Localization
Mechanical properties
Mixtures
Morphology
Nanocomposites
Percolation
Phase separation
Polylactic acid
Polymer blends
Polymer matrix composites
Reduction
Rheology
Spectrum analysis
title Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Carbon%20Nanofillers%20Tunes%20Mechanical%20and%20Electrical%20Percolation%20in%20PHBV:PLA%20Blends&rft.jtitle=Polymers&rft.au=Arroyo,%20Jesse&rft.date=2018-12-11&rft.volume=10&rft.issue=12&rft.spage=1371&rft.pages=1371-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym10121371&rft_dat=%3Cproquest_pubme%3E2206227641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582845364&rft_id=info:pmid/30961296&rfr_iscdi=true