Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals
Chemophototherapy (CPT) merges photodynamic therapy with chemotherapy and can substantially enhance drug delivery. Using a singular liposomal formulation for CPT, we describe a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model to investigate observed antitumor effects. Long-circulating,...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2019-03, Vol.297, p.39-47 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemophototherapy (CPT) merges photodynamic therapy with chemotherapy and can substantially enhance drug delivery. Using a singular liposomal formulation for CPT, we describe a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model to investigate observed antitumor effects. Long-circulating, sterically-stabilized liposomes loaded with doxorubicin (Dox) stably incorporate small amounts of a porphyrin-phospholipid (PoP) photosensitizer in the bilayer. These were administered intravenously to mice bearing low-passage, patient-derived pancreatic cancer xenografts (PDX). Dox PK was described with a two-compartment model and tumor drug disposition kinetics were modeled with first-order influx and efflux rates. Tumor irradiation with 665 nm laser light (200 J/cm2) 1 h after liposome administration increased tumor vascular permeabilization and drug accumulation, which was accounted for in the PK/PD model with increased tumor influx and efflux rates by approximately 12- and 4- fold, respectively. This modeling approach provided an overall 7-fold increase in Dox area under the curve in the tumor, matching experimental data (7.4-fold). A signal transduction model based on nonlinear direct cell killing accounted for observed tumor growth patterns. This PK/PD model adequately describes the CPT anti-PDX tumor response based on enhanced drug delivery at the short drug-light interval used.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 1873-4995 |
DOI: | 10.1016/j.jconrel.2019.01.030 |